Significance of bioactive compounds, therapeutic and agronomic potential of non-commercial parts of the Coffea tree

Autores/as

  • Mayra Cristina Rosales-Villarreal Tecnológico Nacional de México-Instituto Tecnológico de Durango. UPIDET. Felipe Pescador 1830 Ote. 34080 Durango, Dgo., México https://orcid.org/0000-0001-8809-4846
  • Nuria Elizabeth Rocha-Guzmán Tecnológico Nacional de México-Instituto Tecnológico de Durango. UPIDET. Felipe Pescador 1830 Ote. 34080 Durango, Dgo., México https://orcid.org/0000-0002-5715-8939
  • José Alberto Gallegos-Infante Tecnológico Nacional de México-Instituto Tecnológico de Durango. UPIDET. Felipe Pescador 1830 Ote. 34080 Durango, Dgo., México https://orcid.org/0000-0002-6018-5858
  • Martha Rocío Moreno-Jiménez Tecnológico Nacional de México-Instituto Tecnológico de Durango. UPIDET. Felipe Pescador 1830 Ote. 34080 Durango, Dgo., México https://orcid.org/0000-0002-5865-9583
  • Rosalía Reynoso-Camacho Departamento de Investigación y Posgrado en Alimentos. Facultad de Química. Universidad Autónoma de Querétaro. C.U., Cerro de la Campanas S/N 76010 Querétaro, Qro., México https://orcid.org/0000-0002-7223-0062
  • Iza Fernanda Pérez-Ramírez Departamento de Investigación y Posgrado en Alimentos. Facultad de Química. Universidad Autónoma de Querétaro. C.U., Cerro de la Campanas S/N 76010 Querétaro, Qro., México
  • Rubén Francisco González-Laredo Tecnológico Nacional de México-Instituto Tecnológico de Durango. UPIDET. Felipe Pescador 1830 Ote. 34080 Durango, Dgo., México https://orcid.org/0000-0001-6329-1413

DOI:

https://doi.org/10.18633/biotecnia.v21i3.1046

Palabras clave:

coffee leaves, mangiferin, chlorogenic acid, phenolics, diterpenes

Resumen

Coffee is one of the most popular and demanded drinks throughout the world; its consumption goes from the ceremonial to the casual, therefore, the plantations destined for its production are valuable. Besides, the coffee tree is perennial, which guarantees leaves supply throughout the year. Additionally to flowers, coffee leaves have been little studied and commercialized, although they represent an important source of phytochemicals. In flowers, different volatile compounds have been detected; while in leaves, bioactive compounds such as chlorogenic acid and mangiferin have been reported as major phenolics. Both compounds are recognized with anti-inflammatory, antioxidant, anti-obesity and anti-carcinogenic effects. These phytochemicals are produced by the plant as a defense mechanism against biotic or abiotic stresses such as pathogens or adverse weather conditions. This review describes the non-conventional applications that aerial parts of the coffee tree could have as therapeutic or agronomic agents, in addition to the uses that have traditionally been linked to the Coffea plant.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alberdi, E., Sánchez-Gómez, M.V., Ruiz, A., Cavaliere, F., Ortiz- Sanz, C., Quintela-López, T., Capetillo-Zarate, E., Solé- Domènech, S. and Matute, C. 2018. Mangiferin and morin attenuate oxidative stress, mitochondrial dysfunction, and neurocytotoxicity, induced by amyloid beta oligomers. Oxidative Medicine and Cellular Longevity. vol. 2018, Article ID 2856063, 13 pp.

Anoop, N. V., Jacob, R., Paulson, J.M., Dineshkumar, B. and Narayana, C.R. 2018. Mango leaf extract synthesized silver nanorods exert anticancer activity on breast cancer and colorectal carcinoma cells. Journal of Drug Delivery Science and Technology. 44: 8-12.

Avelino, J., Cristancho, M., Georgiou, S., Imbach, P., Aguilar, L., Bornemann, G., Läderach, P., Anzueto, F., Hruska, A.J. and Morales, C. 2015. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security. 7(2): 303-321.

Belayneh, A. and Bussa N.F. 2014. Ethnomedicinal plants used to treat human ailments in the prehistoric place of Harla and Dengego valleys, eastern Ethiopia. Journal of Ethnobiology and Ethnomedicine. 10(1): 18.

Bily, A., Reid, L., Taylor, J., Johnston, D., Malouin, C., Burt, A., Bakan, B., Regnault-Roger, C., Pauls K. and Arnason, J. 2003. Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: resistance factors to Fusarium graminearum. Phytopathology. 93(6): 712-719.

Bose, D., Roy, J.G., Mahapatra, S.D., Datta, T., Mahapatra, S.D. and Biswas, H. 2015. Medicinal plants used by tribals in Jalpaiguri district, West Bengal, India. Journal of Medicinal Plants. 3(3): 15-21.

Brum, C.N.F., Melo, E.F., Barquero, L.O.B., Alves, J.D. and Chalfun-Júnior, A. 2013. Modifications in the metabolism of carbohydrates in (Coffea arabica L. cv. siriema) seedlings under drought conditions. Coffee Science, Lavras. 8(2): 140- 147.

Bulugonda, R.K., Gangappa, D., Beeda, H., Philip, G.H., Rao, D.M. and Faisal, S.M. 2017. Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome. Scientific Reports. 7: 42683.

Camayo, G., Chaves, B., Arcila, J. and Jaramillo, A. 2003. Desarrollo floral del cafeto y su relación con las condiciones climáticas de Chinchiná Caldas. Cenicafé. 54(1): 35-49.

Campa, C., Mondolot, L., Rakotondravao, A., Bidel, L.P., Gargadennec, A., Couturon, E., La Fisca, P., Rakotomalala, J.-J., Jay-Allemand, C. and Davis, A.P. 2012. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: biological implications and uses. Annals of Botany. 110(3): 595-613.

Chemura, A., Mutanga, O. and Odindi, J. 2017. Empirical Modeling of Leaf Chlorophyll Content in Coffee (Coffea Arabica) Plantations With Sentinel-2 MSI Data: Effects of Spectral Settings, Spatial Resolution, and Crop Canopy Cover. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 10(12): 5541-5550.

Chen, X-M., Ma, Z., Kitts, D.D. 2018. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chemistry. 249: 143-153.

Cheng, P., Peng, Z., Yang, J. and Song, S. 2007. The effect of mangiferin on telomerase activity and apoptosis in leukemic K562 cells. Zhong yao cai= Zhongyaocai= Journal of Chinese Medicinal Materials. 30(3): 306-309.

Chieli, E., Romiti, N., Rodeiro, I. and Garrido, G. 2009. In vitro effects of Mangifera indica and polyphenols derived on ABCB1/P-glycoprotein activity. Food and Chemical Toxicology. 47(11): 2703-2710.

Chu, Y.-F., Chen, Y., Black, R.M., Brown, P.H., Lyle, B.J., Liu, R.H. and Ou, B. 2011. Type 2 diabetes-related bioactivities of coffee: assessment of antioxidant activity, NF-κB inhibition, and stimulation of glucose uptake. Food Chemistry. 124(3): 914- 920.

Clemente, J. M., Martinez, H.E.P., Alves, L.C., Finger, F.L. and Cecon, P.R. 2015. Effects of nitrogen and potassium on the chemical composition of coffee beans and on beverage quality. Acta Scientiarum. Agronomy. 37(3): 297-305.

Clifford, M.N., Kirkpatrick, J., Kuhnert, N., Roozendaal, H. and Salgado, P.R. 2008. LC–MS n analysis of the cis isomers of chlorogenic acids. Food Chemistry. 106(1): 379-385.

Conéjéro, G., Noirot, M., Talamond, P and Verdeil, J.-L. 2014. Spectral analysis combined with advanced linear unmixing allows for histolocalization of phenolics in leaves of coffee trees. Frontiers in Plant Science. 5: 39.

Corbo, M.R., Bevilacqua, A., Petruzzi, L., Casanova, F.P. and Sinigaglia, M. 2014. Functional beverages: the emerging side of functional foods: commercial trends, research, and health implications. Comprehensive Reviews in Food Science and Food Safety. 13(6): 1192-1206.

Corrales-Bernal, A., Urango, L.A., Rojano, B. and Maldonado, M.E. 2014. Efectos in vitro e in vivo de la pulpa de mango (Mangifera indica cv. Azúcar) en la carcinogénesis de colon. Archivos Latinoamericanos de Nutrición. 64(1): 16-23.

Cramer, P.J.S. 1957. A review of literature of coffee research in Indonesia, SIC Editorial, Inter-American Institute of Agricultural Sciences. Turrialba, Costa Rica. 262 Pp.

Cuccioloni, M., Bonfili, L., Mozzicafreddo, M., Cecarini, Scuri, V., Cocchioni, M., Nabissi, M., Santoni, G., Eleuteri, A. and Angeletti, M. 2016. Mangiferin blocks proliferation and induces apoptosis of breast cancer cells via suppression of the mevalonate pathway and by proteasome inhibition. Food & Function. 7(10): 4299-4309.

Daglia, M., Papetti, A., Gregotti, C., Bertè, F. and Gazzani, G. 2000. In vitro antioxidant and ex vivo protective activities of green and roasted coffee. Journal of Agricultural and Food Chemistry. 48(5): 1449-1454.

Das, A. and Bordoloi, R. 2016. Ethno medical importance of some plants used for the treatment of cattle diseases by the Tiwa tribe of Morigaon district of Assam, India. World Journal of Pharmacy and Pharmaceutical Sciences. 5(5): 1356-1365.

Davis, A.P., Chester, M., Maurin, O. and Fay, M.F. 2007. Searching for the relatives of Coffea (Rubiaceae, Ixoroideae): the circumscription and phylogeny of Coffeeae based on plastid sequence data and morphology. American Journal of Botany. 94(3): 313-329.

Davis, A.P., Tosh, J., Ruch, N. and Fay, M.F. 2011. Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea. Botanical Journal of the Linnean Society. 167(4): 357-377.

Deka, S.J., Gorai, S., Manna, D. and Trivedi, V. 2017. Evidence of PKC binding and translocation to explain the anticancer mechanism of chlorogenic acid in breast cancer cells. Current Molecular Medicine. 17(1): 79-89.

De Castro Miguel, E., Moreira Gomes, V., De Oliveira, M. and Da Cunha, M. 2006. Colleters in Bathysa nicholsonii K. Schum. (Rubiaceae): ultrastructure, secretion protein composition, and antifungal activity. Plant Biology. 8(5): 715-722.

De Colmenares, N.G., Ramírez‐Martínez, J.R., Aldana, J.O., Ramos‐ Niño, M.E., Clifford, M.N., Pékerar, S. and Méndez, B. 1998. Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. Journal of the Science of Food and Agriculture. 77(3): 368-372.

De Lima, R.B., dos Santos, T.B., Vieira, L.G.E., Ferrarese, M.d.L.L., Ferrarese-Filho, O., Donatti, L., Boeger, M.R.T. and de Oliveira Petkowicz, C.L. 2014. Salt stress alters the cell wall polysaccharides and anatomy of coffee (Coffea arabica L.) leaf cells. Carbohydrate Polymers. 112: 686-694.

Del Terra, L., Lonzarich, V., Asquini, E., Navarini, L., Graziosi, G., Liverani, F.S. and Pallavicini, A. 2013. Functional characterization of three Coffea arabica L. monoterpene synthases: Insights into the enzymatic machinery of coffee aroma. Phytochemistry. 89: 6-14.

Delaroza, F., Rakocevic, M., Malta, G.B., Bruns, R.E. and Scarminio, I.S. 2014. Spectroscopic and chromatographic fingerprint analysis of composition variations in Coffea arabica leaves subject to different light conditions and plant phenophases. Journal of the Brazilian Chemical Society. 25(11): 1929-1938.

Deng, Q., Tian, Y.-X. and Liang, J. 2018. Mangiferin inhibits cell migration and invasion through Rac1/WAVE2 signalling in breast cancer. Cytotechnology. 70(2): 593-601.

Doehlemann, G. and Hemetsberger, C. 2013. Apoplastic immunity and its suppression by filamentous plant pathogens. New Phytologist. 198(4): 1001-1016.

Domingues Júnior, A.P., Shimizu, M.M., Magalhães Silva Moura, J.C., Ramos Catharino, R., Augusto Ramos, R., Vasconcelos Ribeiro, R. and Mazzafera, P. 2012. Looking for the physiological role of anthocyanins in the leaves of Coffea arabica. Photochemistry and Photobiology. 88(4): 928-937.

Dos Santos Scholz, M.B., Kitzberger, C.S.G., Pagiatto, N.F., Pereira, L.F.P., Davrieux, F., Pot, D., Charmetant, P. and Leroy, T. 2016. Chemical composition in wild ethiopian Arabica coffee accessions. Euphytica. 209(2): 429-438.

Du, M., Wen, G., Jin, J., Chen, Y., Cao, J. and Xu, A. 2018. Mangiferin prevents the growth of gastric carcinoma by blocking the PI3K-Akt signalling pathway. Anti-cancer Drugs. 29(2): 167- 175.

Dudareva, N. and Pichersky, E. 2006. Metabolite engineering of floral scent of ornamentals. Journal of Crop Improvement. 18(1-2): 325-346.

Ediriweera, M.K., Tennekoon, K.H., Samarakoon, S.R., Thabrew, I. and De Silva, E.D. 2017. Induction of apoptosis in MCF‐7 breast cancer cells by Sri Lankan endemic mango (Mangifera zeylanica) fruit peel through oxidative stress and analysis of its phytochemical constituents. Journal of Food Biochemistry. 41(1): e12294.

Emura, M., Nohara, I., Toyoda, T. and Kanisawa, T. 1997. The volatile constituents of the coffee flower (Coffea arabica L.). Flavour and Fragrance Journal. 12(1): 9-13.

Fernández-Ponce, M., López-Biedma, A., Sánchez-Quesada, C., Casas, L., Mantell, C., Gaforio, J. and de la Ossa, E.M. 2017. Selective antitumoural action of pressurized mango leaf extracts against minimally and highly invasive breast cancer. Food & Function. 8(10): 3610-3620.

García-Rivera, D., Delgado, R., Bougarne, N., Haegeman, G. and Berghe, W.V. 2011. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Letters. 305(1): 21-31.

Ghimire, K. and Bastakoti, R.R. 2009). Ethnomedicinal knowledge and healthcare practices among the Tharus of Nawalparasi district in central Nepal. Forest Ecology and Management. 257(10): 2066-2072.

Gold-Smith, F., Fernandez, A. and Bishop, K. 2016. Mangiferin and cancer: Mechanisms of action. Nutrients. 8(7): 396.

Green, D.S. 1984. A proposed origin of the coffee leaf-miner, Leucoptera coffeella (Guérin-Méneville)(Lepidoptera: Lyonetiidae).” Bulletin of the ESA. 30(1): 30-31.

Heredia, Y., García, J., López, T., Chil, I., Arias, D., Escalona, J., González, R., Costa, J., Suarez, D. and Sánchez, M. 2018. An ethnobotanical survey of medicinal plants used by inhabitants of Holguín, Eastern Region, Cuba. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas. 17(2): 160-196.

Hou, J., Zheng, D., Fung, G., Deng, H., Chen, L., Liang, J., Jiang, Y. and Hu, Y. 2015. Mangiferin suppressed advanced glycation end products (AGEs) through NF-κB deactivation and displayed anti-inflammatory effects in streptozotocin and high fat diet-diabetic cardiomyopathy rats. Canadian Journal of Physiology and Pharmacology. 94(3): 332-340.

Hwang, S.J., Kim, Y.-W., Park, Y., Lee, H.-J. and Kim, K.-W. 2014. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflammation Research. 63(1): 81-90.

Ivamoto, S.T., Sakuray, L.M., Ferreira, L.P., Kitzberger, C.S., Scholz, M.B., Pot, D., Leroy, T. Vieira, L.G., Domingues, D.S. and Pereira, L.F. 2017. Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiology and Biochemistry. 111: 340-347.

Jang, J.-H., Lee, K.-H., Jung, H.-K., Sim, M.-O., Kim, T.-M., Woo, K.-W., An, B.-K., Cho, J.-H. and Cho, H.-W. 2016. Anti-inflammatory effects of 6′-O-acetyl mangiferin from Iris rossii Baker via NF-κb signal blocking in lipopolysaccharide-stimulated RAW 264.7 cells. Chemico-Biological Interactions. 257: 54-60.

Kitzberger, C.S.G., dos Santos Scholz, M. B., Pereira, L.F.P., Vieira, L.G.E., Sera, T., Silva, J.B.G.D. and de Toledo Benassi, M. 2013. Diterpenes in green and roasted coffee of Coffea arabica cultivars growing in the same edapho-climatic conditions. Journal of Food Composition and Analysis. 30(1): 52-57.

Kölling-Speer, I. and Speer, K. 1997. Diterpenes in coffee leaves. Colloque Scientifique International Sur le Café. 17: 150-154.

Lamorde, M., Tabuti, J.R., Obua, C., Kukunda-Byobona, C., Lanyero, H., Byakika-Kibwika, P. Bbosa, G.S., Lubega, A.. Ogwal-Okeng, J. and Ryan, M. 2010. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda. Journal of Ethnopharmacology. 130(1): 43-53.

Leitão, S., Guerra-Guimarães, L., Bronze, M., Vilas-Boas, L., Sá, M. and Almeida, M. 2011. Chlorogenic acid content in coffee leaves: possible role in coffee leaf rust resistance. Proceedings of the 24th International Conference on Coffee Science (ASIC2010)(Bali).

Lersten, N.R. (1974a). Colleter morphology in Pavetta, Neorosea and Tricalysia (Rubiaceae) and its relationship to the bacterial leaf nodule symbiosis. Botanical Journal of the Linnean Society. 69(2): 125-136.

Lersten, N.R. (1974b). Morphology and distribution of colleters and crystals in relation to the taxonomy and bacterial leaf nodule symbiosis of Psychotria (Rubiaceae). American Journal of Botany. 61(9): 973-981.

Li, H., Huang, J., Yang, B., Xiang, T., Yin, X., Peng, W., Cheng, W., Wan, J., Luo, F. and Li, H. 2013. Mangiferin exerts antitumor activity in breast cancer cells by regulating matrix metalloproteinases, epithelial to mesenchymal transition, and β-catenin signaling pathway. Toxicology and Applied Pharmacology. 272(1): 180-190.

Li, M., Ma, H., Yang, L. and Li, P. 2016. Mangiferin inhibition of proliferation and induction of apoptosis in human prostate cancer cells is correlated with downregulation of B-cell lymphoma-2 and upregulation of microRNA-182. Oncology Letters. 11(1): 817-822.

Lima, R. B., dos Santos, T.B., Vieira, L.G.E., Ferrarese, M.d.L.L., Ferrarese-Filho, O., Donatti, L., Boeger, M.R.T. and de Oliveira Petkowicz, C.L. 2013. Heat stress causes alterations in the cell-wall polymers and anatomy of coffee leaves (Coffea arabica L.). Carbohydrate Polymers. 93(1): 135-143.

Ma, Y., Gao, M. and Liu, D. 2015. Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice. Pharmaceutical Research. 32(4): 1200-1209.

Magalhaes, S., Guedes, R., Demuner, A. and Lima, E. 2008. Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella. Bulletin of Entomological Research. 98(5): 483-489.

Magalhães, S.T., Fernandes, F.L., Demuner, A.J., Picanço, M.C. and Guedes, R.N.C. 2010. Leaf alkaloids, phenolics, and coffee resistance to the leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae). Journal of Economic Entomology. 103(4): 1438-1443.

Mahmoud-Awny, M., Attia, A.S., Abd-Ellah, M.F. and El-Abhar, H.S. 2015. Mangiferin mitigates gastric ulcer in ischemia/ reperfused rats: Involvement of PPAR-γ, NF-κB and Nrf2/ HO-1 signaling pathways. PloS one. 10(7): e0132497.

Mayer, J.L.S., Carmello-Guerreiro, S.M. and Mazzafera, P. 2013. A functional role for the colleters of coffee flowers. AoB Plants. 5: plt029.

Mondolot, L., La Fisca, P., Buatois, B., Talansier, E., De Kochko, A. and Campa, C. 2006. Evolution in caffeoylquinic acid content and histolocalization during Coffea canephora leaf development. Annals of Botany. 98(1): 33-40.

Murthy, P.S. and Manonmani, H. 2008. Bioconversion of coffee industry wastes with white rot fungus Pleurotus florida. Research Journal of Environmental Sciences. 2(2): 145-150.

Naidoo, N., Chen, C., Rebello, S.A., Speer, K., Tai, E.S., Lee, J., Buchmann, S., Koelling-Speer, I. and van Dam, R.M. 2011. Cholesterol-raising diterpenes in types of coffee commonly consumed in Singapore, Indonesia and India and associations with blood lipids: A survey and cross sectional study. Nutrition Journal. 10(1): 48.

Nair, K.P. 2010. Coffee. In: K.P. Prabhakaran Nair (Ed). The agronomy and economy of important tree crops of the developing world. Amsterdam. Elsevier.

Neuwinger, H.D. 2000. African traditional medicine: a dictionary of plant use and applications. With supplement: search system for diseases. Germany. Medpharm. Scientific Publishers, 589 pp

Noratto, G.D., Bertoldi, M.C., Krenek, K., Talcott, S.T., Stringheta, P.C. and Mertens-Talcott, S.U. 2010. Anticarcinogenic effects of polyphenolics from mango (Mangifera indica) varieties. Journal of Agricultural and Food Chemistry. 58(7): 4104- 4112.

Ong, K.W., Hsu, A. and Tan, B.K.H. 2013. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochemical Pharmacology. 85(9): 1341-1351.

Paiva, E. and Machado, S. 2006. Colleters in Caryocar brasiliense (Caryocaraceae) ontogenesis, ultrastructure and secretion. Brazilian Journal of Biology. 66(1B): 301-308.

Pal, R., Chaudhary, M.J., Tiwari, P.C. Nath, R. and Pant, K.K. 2018. Pharmacological and biochemical studies on protective effects of mangiferin and its interaction with nitric oxide (NO) modulators in adjuvant-induced changes in arthritic parameters, inflammatory, and oxidative biomarkers in rats. Inflammopharmacology. Pp 1-9.

Patay, É.B., Bencsik, T. and Papp, N. 2016a. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pacific Journal of Tropical Medicine. 9(12): 1127-1135.

Patay, E.B., Nemeth, T., Nemeth, T.S., Filep, R., Vlase, L. and Papp, N. 2016b. Histological and phytochemical studies of Coffea benghalensis B. Heyne EX Schult., compared with Coffea arabica L. Farmacia. 64(1): 125-130.

Patay, É.B., Sali, N., Kőszegi, T., Csepregi, R., Balázs, V.L., Németh, T.S., Németh, T. and Papp, N. 2016c. Antioxidant potential, tannin and polyphenol contents of seed and pericarp of three Coffea species. Asian Pacific Journal of Tropical Medicine. 9(4): 366-371.

Qu, Y., Zhou, L. and C. Wang, C. 2017. Mangiferin inhibits IL-1β- induced inflammatory response by activating PPAR-γ in human osteoarthritis chondrocytes. Inflammation. 40(1): 52-57.

Rajendran, P., Rengarajan, T., Nandakumar, N., Ivya, H. and Nishigaki, I. 2015. Mangiferin in cancer chemoprevention and treatment: pharmacokinetics and molecular targets. Journal of Receptors and Signal Transduction. 35(1): 76-84.

Ramírez, N.M., Toledo, R.C.L., Moreira, M.E.C., Martino, H.S.D., dos Anjos Benjamin, L., de Queiroz, J.H., Ribeiro A.Q. and Ribeiro, S.M.R. 2017. Anti-obesity effects of tea from Mangifera indica L. leaves of the Ubá variety in high-fat diet-induced obese rats. Biomedicine & Pharmacotherapy. 91: 938-945.

Ratanamarno, S. and Surbkar, S. 2017. Caffeine and catechins in fresh coffee leaf (Coffea arabica) and coffee leaf tea. Maejo International Journal of Science and Technology. 11(3): 211.

Rocha, L.W., Bonet, I.J.M., Tambeli, C.H., de-Faria, F.M. and Parada, C.A. 2018. Local administration of mangiferin prevents experimental inflammatory mechanical hyperalgesia through CINC-1/epinephrine/PKA pathway and TNF-α inhibition. European Journal of Pharmacology. 830: 87-94.

Rodrigues, F.A., Carré-Missio, V., Jham, G.N., Berhow, M. and Schurt, D.A. 2011. Chlorogenic acid levels in leaves of coffee plants supplied with silicon and infected by Hemileia vastatrix. Tropical Plant Pathology. 36(6): 404-408.

Ross, I.A. 2007. Medicinal plants of the world, volume 3: Chemical constituents, traditional and modern medicinal uses, Springer Science & Business Media.

Sadeghi Ekbatan, S., Li, X.-Q., Ghorbani, M., Azadi, B. and Kubow, S. 2018. Chlorogenic Acid and Its Microbial Metabolites Exert Anti-Proliferative Effects, S-Phase Cell-Cycle Arrest and Apoptosis in Human Colon Cancer Caco-2 Cells. International Journal of Molecular Sciences. 19(3): 723.

Sadhukhan, P., Saha, S., Dutta, S. and Sil, P.C. 2018. Mangiferin ameliorates cisplatin induced acute kidney injury by upregulating Nrf-2 via the activation of PI3K and exhibits synergistic anticancer activity with cisplatin. Frontiers in Pharmacology. 9.

Saha, S., P. Sadhukhan, K. Sinha, N. Agarwal and P. C. Sil. 2016. Mangiferin attenuates oxidative stress induced renal cell damage through activation of PI3K induced Akt and Nrf-2 mediated signaling pathways. Biochemistry and Biophysics Reports. 5: 313-327.

Salgado, P.R., Favarin, J.L. Leandro, R.A. and de Lima Filho, O.F. 2008. Total phenol concentrations in coffee tree leaves during fruit development. Scientia Agricola. 65(4): 354-359.

Sanchez, P.M., Pauli, E.D., Scheel, G.L., Rakocevic, M., Bruns, R.E. and Scarminio, I.S. 2018. Irrigation and Light Access Effects on Coffea arabica L. Leaves by FTIR-Chemometric Analysis. Journal of the Brazilian Chemical Society. 29(1): 168-176.

Sharifi-Rad, J., Salehi, B., Stojanović-Radić, Z.Z., Fokou, P.V.T., Sharifi-Rad, M., Mahady, G.B., ... Iriti, M. 2017. Medicinal plants used in the treatment of tuberculosis - Ethnobotanical and ethnopharmacological approaches. Biotechnology Advances. https://doi.org/10.1016/j. biotechadv.2017.07.001.

Shi, H., Shi, A., Dong, L., Lu, X., Wang, Y., Zhao, J., Dai, F. and Guo, X. 2016. Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clinical Nutrition. 35(6): 1366-1373.

Shi, W., Deng, J., Tong, R., Yang, Y., He, X., Lv, J., Wang, H., Deng, S., Qi, P. Zhang, D. and Wang, Y. 2016. Molecular mechanisms underlying mangiferin-induced apoptosis and cell cycle arrest in A549 human lung carcinoma cells. Molecular Medicine Reports. 13(4): 3423-3432.

Silva, M. d. C., Várzea, V., Guerra-Guimarães, L., Azinheira, H.G., Fernandez, D., Petitot, A.-S., Bertrand, B., Lashermes, P. and Nicole, M. 2006. Coffee resistance to the main diseases: leaf rust and coffee berry disease. Brazilian Journal of Plant Physiology. 18(1): 119-147.

Sridevi, V. and Giridhar, P. 2016. Variations in diterpenes-cafestol and kahweol content in beans of robusta coffee grown at different altitudes. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 86(2): 291-297.

Stashenko, E.E., Martínez, J.R., Cárdenas‐Vargas, S., Saavedra‐ Barrera, R. and Durán, D.C. 2013. GC–MS study of compounds isolated from Coffea arabica flowers by different extraction techniques. Journal of Separation Science. 36(17): 2901- 2914.

Talamond, P., Mondolot, L., Gargadennec, A., de Kochko, A., Hamon, S., Fruchier, A. and Campa, C. 2008. First report on mangiferin (C-glucosyl-xanthone) isolated from leaves of a wild coffee plant, Coffea pseudozanguebariae (Rubiaceae). Acta Botanica Gallica. 155(4): 513-519.

Tesfaye, K., Govers, K., Bekele, E. and Borsch, T. 2014. ISSR fingerprinting of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces. Plant Systematics and Evolution. 300(5): 881-897.

Thomas, V. and Dave, Y. 1989. Histochemistry and senescence of colleters of Allamanda cathartica (Apocynaceae). Annals of Botany. 64(2): 201-203.

Trevisan, M.T., de Almeida, R.F., Soto, G., Virginio Filho, E.D.M., Ulrich, C.M. and Owen, R.W. 2016. Quantitation by HPLC-UV of Mangiferin and Isomangiferin in coffee (Coffea arabica) leaves from Brazil and Costa Rica after solvent extraction and infusion. Food Analytical Methods. 9(9): 2649-2655.

Ukers, W.H. 1935. All about coffee, Library of Alexandria.

Van Wyk, B.-E. 2015. A review of commercially important African medicinal plants. Journal of Ethnopharmacology. 176: 118- 134.

Várzea, V. and Marques, D. 2005. Population variability of Hemileia vastatrix vs. coffee durable resistance. Durable resistance to coffee leaf rust. UFV, Viçosa, p. 53-74.

Vega, F.E., Posada, F. and Infante, F. 2006. Coffee insects: ecology and control. Encyclopedia of Pest Management. 1-4.

Vyas, A., Syeda, K., Ahmad, A., Padhye, S. and Sarkar, F.H. 2012. Perspectives on medicinal properties of mangiferin. Mini Reviews in Medicinal Chemistry. 12(5): 412-425.

Woldeab, B., Regassa, R., Alemu, T., and Megersa, M. 2018. Medicinal plants used for treatment of diarrhoeal related diseases in Ethiopia. Evidence-Based Complementary and Alternative Medicine. Vol 2018, Article ID 4630371, 20 pp.

Yamagata, K., Izawa, Y., Onodera, D. and Tagami, M. 2018. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Molecular and Cellular Biochemistry. 441(1-2): 9-19.

Yan, Y., Liu, N., Hou, N., Dong L. and Li, J. 2017. Chlorogenic acid inhibits hepatocellular carcinoma in vitro and in vivo. The Journal of Nutritional Biochemistry. 46: 68-73.

Yoshimi, N., K. Matsunaga, M. Katayama, Y. Yamada, T. Kuno, Z. Qiao, A. Hara, J. Yamahara and H. Mori. 2001. The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats. Cancer Letters 163(2): 163-170.

Zhang, B. P., J. Zhao, S.-s. Li, L.-j. Yang, L.-l. Zeng, Y. Chen and J. Fang. 2014. Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro. Acta Pharmacologica Sinica 35(2): 257.

Zheng, X.-Q. and H. Ashihara. 2004. Distribution, biosynthesis and function of purine and pyridine alkaloids in Coffea arabica seedlings. Plant Science 166(3): 807-813.

Descargas

Publicado

2019-07-29

Cómo citar

Rosales-Villarreal, M. C., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., Reynoso-Camacho, R., Pérez-Ramírez, I. F., & González-Laredo, R. F. (2019). Significance of bioactive compounds, therapeutic and agronomic potential of non-commercial parts of the Coffea tree. Biotecnia, 21(3), 143–153. https://doi.org/10.18633/biotecnia.v21i3.1046

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.