Inhibición de lipasa pancreática por flavonoides: importancia del doble enlace C2=C3 y la estructura plana del anillo C//Inhibition of pancreatic lipase by flavonoids: relevance of the C2=C3 double bond and C-ring planarity

Autores/as

  • Alejandra Isabel Martinez-Gonzalez Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, México https://orcid.org/0000-0002-0248-9175
  • Ángel Gabriel Díaz-Sánchez Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, México https://orcid.org/0000-0002-6398-7274
  • Laura Alejandra de la Rosa Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, México
  • Ismael Bustos- Jaimes Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX 04510, México https://orcid.org/0000-0003-3038-8141
  • Alma A. Vazquez-Flores Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, México
  • Emilio Alvarez-Parrilla Departamento de Ciencias Químico Biológicas, Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, México https://orcid.org/0000-0002-6162-8139

DOI:

https://doi.org/10.18633/biotecnia.v22i2.1245

Palabras clave:

Lipasa pancreática, flavonoide, estructura plana, sitio de unión

Resumen

Lipasa pancreática es una enzima clave en el metabolismo de lípidos. Los flavonoides son compuestos bioactivos de gran relevancia debido a sus interacciones con enzimas digestivas. Se evaluó la actividad de lipasa pancreática en presencia de flavonoides. Mediante espectroscopía UVVisible se determinó que el mejor inhibidor fue quercetina, seguido de rutina > luteolina > catequina > hesperetina, con valores de IC50 de 10.30, 13.50, 14.70, 28.50 y 30.50 μM, respectivamente. Todos los flavonoides mostraron una inhibición mixta, excepto catequina que mostró una inhibición acompetitiva. La capacidad inhibitoria de los flavonoides se relacionó con propiedades estructurales compartidas entre los distintos flavonoides, como la hidroxilación en las posiciones C5, C7 (anillo A), C2’ y C3’ (anillo B), y el doble enlace entre C2 y C3 (anillo C). Los resultados de inhibición coincidieron con el análisis de la fluorescencia extrínseca. Los estudios de docking molecular indicaron que la interacción entre lipasa pancreática y los flavonoides fue principalmente mediante interacciones hidrofóbicas (pi-stacking). Las interacciones de todos los flavonoides, excepto rutina, se dieron en el mismo sitio (subsitio 1) de la enzima. La insaturación entre C2 y C3 fue determinante para el acomodo de los flavonoides con la enzima, principalmente por interacciones de pi-stacking.

ABSTRACT

Pancreatic lipase is a key enzyme in lipid metabolism. Flavonoids are bioactive compounds obtained from vegetables with big relevance, due to their intrinsic interaction with digestive enzymes. Pancreatic lipase activity was evaluated in the presence of flavonoids, through UV-Vis spectroscopy. All tested flavonoids showed a mixed-type inhibition, except catechin, which showed a uncompetitive inhibition. The best inhibitor was quercetin followed by rutin > luteolin > catechin > hesperetin, with IC50 values of 10.30, 13.50, 14.70, 28.50 and 30.50 μM, respectively. The flavonoids inhibitory capacity was related to structural properties shared between the different flavonoids, such as the hydroxylation at C5, C7 (ring A), C2’ and C3’ (ring B), and the double bond between C2 and C3 (ring C). The inhibition results are in agreement with the extrinsic fluorescence analysis. Molecular docking studies indicated that the interaction between pancreatic lipase and flavonoids was mainly through hydrophobic interactions (pi-stacking). The interactions of all flavonoids, except rutin, occurred at the same enzyme site (subsite 1). Instauration between C2 and C3 was decisive for the arrangement of flavonoids with the enzyme, mainly due to pi-stacking interactions.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acharya, P., Madhusudhana, N. 2003. Stability Studies on a Lipase from Bacillus subtilis in Guanidinium Chloride. Journal of Protein Chemistry. 22: 51-60.

Amat, A., Sgamellotti, A., Fantacci, S. 2008. Theoretical Study of the Structural and Electronic Properties of Luteolin and Apigenin Dyes. Berlin, Heidelberg.

Birari, R.B., Bhutani, K.K. 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discovery Today. 12: 879-889.

Birari, R.B., Gupta, S., Gopi Mohan, C., Bhutani, K.K. 2011. Antiobesity and Lipid Lowering Effects of Glycyrrhiza Chalcones: Experimental and Computational Studies. Phytomedicine. 18: 795-801.

Buchholz, T., Melzig, M.F. 2015. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Medica. 81: 771-783.

Calabrone, L., Larocca, M., Marzocco, S., Martelli, G., Rossano, R. 2015. Total phenols and flavonoids content, antioxidant capacity and lipase inhibition of root and leaf horseradish (Armoracia rusticana) extracts. Food and Nutrition Sciences. 6: 64-74.

Cerezo, A.B., Winterbone, M.S., Moyle, C.W., Needs, P.W., Kroon, P.A. 2015. Molecular structure‐function relationship of dietary polyphenols for inhibiting VEGF‐induced VEGFR‐2 activity molecular. Nutrition & Food Research. 59: 2119-2131.

Cook, N.C., Samman, S. 1996. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. The Journal of Nutritional Biochemistry. 7: 66-76.

Dalar, A., Konczak, I. 2013. Phenolic contents, antioxidant capacities and inhibitory activities against key metabolic syndrome relevant enzymes of herbal teas from Eastern Anatolia. Industrial Crops and Products. 44: 383-390.

De Vivo, M., Masetti, M., Bottegoni, G., Cavalli, A. 2016. Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry. 59: 4035-4061.

Egloff, M.P., Sarda, L., Verger, R., Cambillau, C., Tilbeurgh, H. 1995. Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase. Protein Science. 4: 44-57.

Erlund, I. 2004. Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nutrition Research. 24: 851-874.

Gasymov, O.K., Glasgow, B.J. 2007. ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta. 1774: 403-411.

Gonzales, G., Smagghe, G., Grootaert, C., Zotti, M., Raes, K., Camp, J. 2015. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews 47: 175-190.

Halim, A., Zaroog, M., Kadir, H., Tayyab, S. 2017. Alcohol-induced structural transitions in the acid-denatured Bacillus licheniformis α-amylase. Journal of Saudi Chemical Society. 21: S349-S358.

Harborne, J.B. 1964. Plant polyphenols—XI.: The structure of acylated anthocyanins. Phytochemistry. 3: 151-160.

Hawe, A., Sutter, M., Jiskoot, W. 2008. Extrinsic Fluorescent Dyes as Tools for Protein Characterization. Pharmaceutical Research. 25: 1487-1499.

He, Q., Lv, Y., Yao, K. 2006. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chemistry. 101: 1178-1182.

Heim, K.E., Tagliaferro, A.R., Bobilya, D.J. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. The Journal of Nutritional Biochemistry. 13: 572-584.

Hu, B., Cui, F.C., Yin, F., Zeng, X., Sun, Y., Li, Y. 2015. Caffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad. International Journal of Biological Macromolecules. 80: 529-535.

Huang, W.Y., Cai, Y.Z., Zhang, Y. 2009. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutrition and Cancer. 62: 120.

Kokotos, G. 2003. Inhibition of digestive lipases by 2-oxo amide triacylglycerol analogues. Journal of Molecular Catalysis B: Enzymatic. 22: 255-269.

Kuhnert, N., Dairpoosh, F., Jaiswal, R., Matei, M., Deshpande, S., Golon, A., Nour, H., Karakose, H., Hourani, N. 2011. Hill coefficients of dietary polyphenolic enzyme inhibitiors: can beneficial health effects of dietary polyphenols be explained by allosteric enzyme denaturing? Journal of Chemical Biology. 4: 109-116.

Lee, J.S., Yoon, N.R., Kang, B.H., Lee, S.W., Gopalan, S.A., Jeong, H.M., Lee, S.H., Kwon, D.H., Kang, S.W. 2014. Response characterization of a fiber optic sensor array with dyecoated planar waveguide for detection of volatile organic compounds. Sensors. 14: 11659-11671.

Li, Q., Wei, Q., Yuan, E., Yang, J., Ning, Z. 2014. Interaction between four flavonoids and trypsin: effect on the characteristics of trypsin and antioxidant activity of flavonoids. International Journal of Food Science & Technology. 49: 1063-1069.

Li, Y.Q., Yang, P., Fei, G., Zhang, Z.W., Wu, B. 2011. Probing the interaction between 3 flavonoids and pancreatic lipase by methods of fluorescence spectroscopy and enzymatic kinetics. European Food Research and Technology. 233: 63-69.

Lo Piparo, E., Scheib, H., Frei, N., Williamson, G., Grigorov, M.,Chou, C.J. 2008. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. Journal of Medicinal Chemistry. 51: 3555-3561.

Martínez-González, A.I., Álvarez-Parrilla, E., Díaz-Sánchez, A.G., de la Rosa, L.A., Núñez-Gastelum, J.A., Vázquez-Flores, A.A., González-Aguilar, G. 2017a. In Vitro Inhibition of pancreatic lipase by polyphenols: A kinetic, fluorescence spectroscopy and molecular docking study. Food Technology and Biotechnology. 55: 519-530.

Martínez-González, A.I., Díaz-Sánchez, A.G., de la Rosa, L.A., Bustos-Jaimes, I., Álvarez-Parrilla, E. 2019. Inhibition of α-amylase by flavonoids: Structure activity relationship (SAR). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 206: 437-447.

Martínez-González, A.I., Díaz-Sánchez, A.G., Rosa, L.A., Vargas-Requena, C.L., Bustos-Jaimes, I., Álvarez-Parrilla, E. 2017b. Polyphenolic compounds and digestive enzymes: In vitro non-covalent interactions. Molecules. 22: 669.

Miled, N., Canaan, S., Dupuis, L., Roussel, A., Riviere, M. 2000. Digestive lipases: from three-dimensional structure to physiology. Biochimie. 82: 973-976.

Pace, N., Trevino, S., Prabhakaran, E., Scholtz, M. 2004. Protein structure, stability and solubility in water and other solvents. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences. 359: 1225-1235.

Plumb, G.W., Price, K.R., Williamson, G. 1999. Antioxidant properties of flavonol glycosides from tea. Redox Report. 4: 13-16.

Proença, C., Freitas, M., Ribeiro, D., Sousa, J., Carvalho, F., Silva, A., Fernandes, P., Fernandes, E. 2017. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure – Activity relationship study. Food and Chemical Toxicology. 111: 474-481.

Rawel, H.M., Rohn, S., Kruse, H.P., Kroll, J. 2002. Structural changes induced in bovine serum albumin by covalent attachment of chlorogenic acid. Food Chemistry. 78: 443-455.

Ribeiro, D., Freitas, M., Lima, J.L., Fernandes, E. 2015. Proinflammatory pathways: The modulation by flavonoids. Medicinal Research Review. 35: 877-936.

Sakulnarmrat, K., Konczak, I. 2012. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chemistry. 134: 1011-1019.

Tadera, K., Minami, Y., Takamatsu, K. 2006. Inhibition of α-glucosidase and α-amylase by flavonoids. Journal of Nutritional Science and Vitaminology. 52: 149-153.

Tipton, K.F. 1996. Patterns of enzyme inhibition. En: Enzymology Labfax. P. C. Engel (ed.), pp. 115-171. BIOS Scientific Publishers, Oxford.

van Tilbeurgh, H., Bezzine, S., Cambillau, C., Verger, R., Carriere, F. 1999. Colipase: structure and interaction with pancreatic lipase. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. 1441: 173-184.

Zeng, H.J., Yang, R., Liang, H., Qu, L.B. 2015. Molecular interactions of flavonoids to pepsin: Insights from spectroscopic and molecular docking studies. Spectrochimica Acta Part A: Molecular Biomolecular Spectros. 151: 576-590.

Zhang, B., Deng, Z., Ramdath, D.D., Tang, Y., Chen, P.X. 2015. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chemistry. 172: 862-872.

Zhang, J., Xiao, L., Yang, Y., Wang, Z., Li, G. 2014. Lignin binding to pancreatic lipase and its influence on enzymatic activity. Food Chemistry. 149: 99-106.

Zhang, X., Jia, Y., Ma, Y., Cheng, G., Cai, S. 2018. Phenolic composition, antioxidant properties, and inhibition toward digestive enzymes with molecular docking Analysis of different fractions from Prinsepia utilis royle fruits. Molecules. 23: 1-21.

Descargas

Publicado

2020-03-21

Cómo citar

Martinez-Gonzalez, A. I., Díaz-Sánchez, Ángel G., de la Rosa, L. A., Bustos- Jaimes, I., Vazquez-Flores, A. A., & Alvarez-Parrilla, E. (2020). Inhibición de lipasa pancreática por flavonoides: importancia del doble enlace C2=C3 y la estructura plana del anillo C//Inhibition of pancreatic lipase by flavonoids: relevance of the C2=C3 double bond and C-ring planarity. Biotecnia, 22(2), 50–60. https://doi.org/10.18633/biotecnia.v22i2.1245

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.