HONGOS FITOPATÓGENOS MODULAN LA EXPRESIÓN DE LOS GENES ANTIMICROBIANOS phlD Y hcnC DE LA RIZOBACTERIA Pseudomonas fluorescens UM270

Julie E. Hernández-Salmerón, Benjamín R. Hernández-Flores, Ma del Carmen Rocha-Granados, Pedro D. Loeza- Lara, Gustavo Santoyo

Resumen


El objetivo de este trabajo fue evaluar el efecto antagónico de la rizobacteria promotora del crecimiento vegetal Pseudomonas fluorescens UM270 hacia los hongos fitopatógenos Botrytis cinerea, Fusarium oxysporum, Fusarium solani y Rhizoctonia solani. También, se determinó la expresión de los genes phlD y hcnC de la cepa UM270 en presencia de los fitopatógenos durante bioensayos de antagonismo in vitro. Los resultados muestran que la cepa UM270 logra inhibir el crecimiento del micelio de B. cinerea (45%), F. solani (25%) y R. solani (24%) en diferente grado, mientras que para F. oxysporum (1%) no hubo inhibición significativa. Al analizar la expresión del gen phlD, se observó que los patógenos la modulan diferencialmente, ya que mientras B. cinerea induce su expresión, los demás patógenos la reprimen . En el caso del gen hcnC, B. cinerea y F. oxysporum no afectaron su expresión, mientras que F. solani y R. solani la inhibieron. Estos resultados sugieren que los fitopatógenos pueden modular la expresión de genes importantes para la síntesis de compuestos antimicrobianos en Pseudomonas fluoresces UM270.


Palabras clave


Biocontrol; 2,4-diacetilfloroglucinol; ácido cianhídrico; rizobacteria

Texto completo:

PDF

Referencias


Adesemoye, A.O. y Kloepper, J.W. 2009. Plant–microbes interactions in enhanced fertilizer-use efficiency. Applied Microbiology and Biotechnology. 85, 1-12.

Ahmad, F., Ahmad, I. y Khan, M.S. 2008. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research. 163:173-181.

Bangera, M.G. y Thomashow, L.S. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2–87. Journal of Bacteriology. 181, 3155–3163.

Combes-Meynet, E., Pothier, J.F., Moënne-Loccoz, Y. y Prigent- Combaret, C. 2011. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Molecular Plant-Microbe Interactions. 24, 271–284.

Coutinho, B.G., Licastro, D., Mendonça-Previato, L., Cámara, M. y Venturi, V. 2015 Plant-influenced gene expression in the rice endophyte Burkholderia kururiensis M130. Molecular Plant- Microbe Interactions. 28:10-21.

DeCoste, N. J., Gadkar, V. J. y Filion, M. 2011. Relative and absolute quantitative real-time PCR-based quantifications of hcnC and phlD gene transcripts in natural soil spiked with Pseudomonas sp. strain LBUM300. Applied and Environmental Microbiology. 77:41-47.

Duke, K.A., Becker, M. G., Girard, I.J., Millar, J.L., Fernando, W.D., Belmonte, M.F. y Kievit, T.R. 2017. The biocontrol agent Pseudomonas chlororaphis PA23 primes Brassica napus defenses through distinct gene networks. BMC genomics, 18: 467.

Fedi, S., Tola, E., Moenne-Loccoz, Y., Dowling, D.N., Smith, L.M., y O´Gara, F. 1997. Evidence for signaling between Pythium ultimum and P. fluorescens F113-P. ultimum represses the expression of genes in P. fluorescens F113, resulting in altered ecological fitness. Applied and Environmental Microbiology. 63:4261-4266.

Gaballa, A., Abeysinghe, P.D., Urich, G., Matthijs, S., De Greve, H., Cornelis, P. y Koedam, N. 1997. Trehalose induces antagonism towards Pythium debaryanum in Pseudomonas fluorescens ATCC 17400. Applied and Environmental Microbiology. 63:4340-4345.

Glick, B.R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research. 169: 30-39.

Haas, D. y Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology. 3:307.

Habibi, R., Tarighi, S., Behravan, J., Taheri, P., Kjøller, A. H., Brejnrod, A. y Sørensen, S. J. 2017. Whole-Genome sequence of Pseudomonas fluorescens EK007-RG4, a promising biocontrol agent against a broad range of bacteria, including the fire blight bacterium Erwinia amylovora. Genome announcements. 5:e00026-17.

Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., del Carmen Orozco-Mosqueda, M., Macías-Rodríguez, L. I., Reyes-de la Cruz, H. y Santoyo, G. 2015. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control. 81:83-92.

Hernández-Salmerón, J. E., Hernández-León, R., Orozco-Mosqueda, M. D. C., Valencia-Cantero, E., Moreno-Hagelsieb, G. y Santoyo, G. 2016. Draft genome sequence of the biocontrol and plant growth-promoting rhizobacterium Pseudomonas fluorescens strain UM270. Standards in Genomic Sciences. 11:5.

Jiao, Z., Wu, N., Hale, L., Wu, W., Wu, D. y Guo, Y. 2013. Characterisation of Pseudomonas chlororaphis subsp. aurantiaca strain Pa40 with the ability to control wheat sharp eyespot disease. Annals of Applied Biology. 163:444-453.

Kamensky, M., Ovadis, M., Chet, I. y Chernin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry. 35:323-331.

Keel, C., D.M. Weller, A. Natsch, G. Défago, R.J. Cook. y Thomashow, L.S. 1996. Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Applied and Environmental Microbiology. 62, 552–563.

Laville, J., Blumer, C., Von Schroetter, C., Gaia, V., Défago, G., Keel,

C. y Haas, D. 1998. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. Journal of Bacteriology. 180:3187-3196.

Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., Wan, Y., Zeng, G., Long, F., Liu, C. y Liu, Y. 2012. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Applied Microbiology and Biotechnology. 93:1745-1753.

Muyzer G, De Waal E.C. y Uitterlinden A.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology. 59:695–700.

Pandya, M., Rajput, M. y Rajkumar, S. 2015. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology. 84:80-89.

Pietro, A. D., Madrid, M. P., Caracuel, Z., Delgado‐Jarana, J., y Roncero, M.I.G. 2003. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology. 4:315-325.

Raaijmakers, J.M. y Weller, D.M. 2001. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior rootcolonizing P. fluorescens strain Q8r1-96. Applied and Environmental Microbiology. 67: 2545–2554.

Rashid, S., Charles, T.C. y Glick, B.R. 2012 Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology. 61:217-224.

Rojas-Solís, D., Hernández-Pacheco, C. E. y Santoyo, G. 2016. Evaluation of Bacillus and Pseudomonas to colonize the rhizosphere and their effect on growth promotion in tomato (Physalis ixocarpa Brot. ex Horm.). Revista Chapingo Serie Horticultura. 22:45-57.

Saini, R., Dudeja, S.S., Giri, R. y Kumar, V. 2015. Isolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern India. Journal of Basic Microbiology. 55:74-81.

Santoyo, G., Hernández-Pacheco, C., Hernández-Salmerón, J. y Hernández-León, R. 2017. The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Spanish Journal of Agricultural Research, 15:03-01.

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. y Glick, B. R. 2016. Plant growth-promoting bacterial endophytes. Microbiological research. 183:92-99.

Santoyo, G., Orozco-Mosqueda, Ma. del C. y Govindappa, M. 2012. Mechanisms of biocontrol and plant growthpromoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Science & Technology. 22:855-872.

Santoyo, G., Valencia-Cantero, E., Orozco-Mosqueda, Ma. del C., Peña-Cabriales, J.J. y Farías-Rodríguez, R. 2010. Papel de los sideróforos en la actividad antagónica de Pseudomonas fluorescens zum80 hacia hongos fitopatógenos. Terra Latinoamericana. 28:53-60.

Sun, D., Zhuo, T., Hu, X., Fan, X. y Zou, H. 2017. Identification of a Pseudomonas putida as biocontrol agent for tomato bacterial wilt disease. Biological Control. 114:45-50.

Velázquez-Becerra, C., Macías-Rodríguez, L. I., López-Bucio, J., Flores-Cortez, I., Santoyo, G., Hernández-Soberano, C. y Valencia-Cantero, E. 2013. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Protoplasma. 250:1251-1262.

Weisburg, W. G., Barns, S. M., Pelletier, D. A. y Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173:697-703.

Yang, F. y Cao, Y. 2012. Biosynthesis of phloroglucinol compounds in microorganisms. Applied Microbiology and Biotechnology. 93:487-495.

Zhou, T., Chen, D., Li, C., Sun, Q., Li, L., Liu, F., Shen, Q. y Shen, B. 2012. Isolation and characterization of Pseudomonas brassicacearum J12 as an antagonist against Ralstonia solanacearum and identification of its antimicrobial components. Microbiological Research. 167:388-394.




DOI: http://dx.doi.org/10.18633/biotecnia.v20i2.609

Enlaces refback

  • No hay ningún enlace refback.

Comentarios sobre este artículo

Ver todos los comentarios
 |  Añadir comentario