COMPOUNDS WITH in vitro ANTIBACTERIAL ACTIVITY FROM HYDROSOL OF Lippia palmerI AND MORPHOMETRIC CHANGES ON Listeria monocytogenes

Autores/as

  • Joel Said García-Romo Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México
  • María Susana Yépiz-Gómez Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México
  • Maribel Plascencia-Jatomea Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México
  • Hisila Del Carmen Santacruz- Ortega Departamento de Investigación en Polímeros y Materiales. Universidad de Sonora, Hermosillo, Sonora, México
  • Armando Burgos-Hernández Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México
  • Jesús Ramon García De León Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México
  • Francisco Javier Cinco-Moroyoqui Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México
  • Jesús Borboa-Flores Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, Hermosillo, Sonora, México

DOI:

https://doi.org/10.18633/biotecnia.v20i3.713

Palabras clave:

Lamiaceae, bioactive compounds, pathogenic bacteria, antibacterial effect

Resumen

Foodborne diseases have increased, and with it, the interest to discover new natural antimicrobials; the use of aromatic plants, due to the extraction and use of the essential oil (EO), are widely studied and with great biological activity. However, studies with hydrosols (HS) from aromatic plants are limited. The aim in this study was to evaluate the antibacterial activity of HS from Lippia palmeri plant against the bacterial pathogen L. monocytogenes. HS was obtained by hydrodistillation and fractionation thereof by open column chromatography. The antibacterial activity was performed by disk diffusion. The inhibitory concentration (IC50) was estimated using the PROBIT survival analysis. Ampicillin was used as control. To evaluate the diameter and cellular damage, optical microscopy and epifluorescence were used, respectively. The characterization was performed by spectroscopy. HS showed IC50 of 224 μL/mL and from HS two fractions were obtained. The fraction with the highest activity showed an IC50 of 125 mg/mL and rosmarinic acid and a phthalate derivative were identified from this fraction. HS, showed bioactivity against L. monocytogenes. Therefore, this would be a candidate for use as an active ingredient in the disinfection of food and areas in contact with them.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AOAC. 1990. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists. Washington, D.C.

Atoui, A.K., Mansouri, A., Boskou, G. y Kefalas, P. 2005. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chemistry. 89 (1): 27-36.

Balsalobre-Hernández, B. y Hernández-Godoy, J. 2004. Resistencias a antibióticos en Listeria monocytogenes y Salmonella entérica aislados de alimentos de origen animal. Salud Ambiental. 4 (1-2): 42-46.

Bass, D.A., Parce, J.W., Dechatelet, L.R., Szejda, P., Seeds, M. C. y Thomas, M. 1983. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. The Journal of Immunology. 130 (4): 1910-1917.

Castellanos, D.E., Enríquez, A., Díaz, L.J. y León, T.E. 2009. Evaluación in vitro del efecto Inhibidor de Purines de Chípaca (Bidens pilosa) Sobre el Crecimiento de Phytophthora infestans. Cuadernos de Agroecologia. 4 (1).

Chung, Y.C. y Chen, C. Y. 2008. Antibacterial characteristics and activity of acid soluble chitosan. Bioresource Technology. 99 (8): 2806-2814.

Cona, E.T. 2002. Condiciones para un buen estudio de susceptibilidad mediante test de difusión en agar. Rev Chil Infect. 19 (2): 77-81.

Corella-Bernal, R.A. y Ortega-Nieblas, M.M. 2013. Importancia del aceite esencial y la producción de orégano Lippia palmeri Watson en el estado de Sonora. Biotecnia. 105 (1).

Domínguez, X.A. 1979. Métodos de investigación físico química. 1º ed. Ed. Limusa, S.A. México. 81-90, 211-226.

Duty, S.M., Singh, N.P., Silva, M.J., Barr, D.B., Brock, J.W., Ryan, L. y Hauser, R. 2003. The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environmental Health Perspectives. 111 (9): 1164.

El-Syed, M. 2012. Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (Streptomyces mirabilis Strain NSQu-25). World Applied Sciences Journal. 2 (9): 1202-1212.

Exarchou, V., Godejohann, M., van Beek, T.A., Gerothanassis, I.P. y Vervoort, J. 2003. LC-UV-solid-phase extraction-NMR-MS combined with a cryogenic flow probe and its application to the identification of compounds present in Greek oregano. Analytical Chemistry. 75 (22): 6288-6294.

Field, A. 2013. Discovering statistics using IBM SPSS statistics. 4th ed. Sage. ISBN 978-1-4462-4918.

Gahan, C.G. y Hill C. 2014. Listeria monocytogenes: survival and adaptation in the gastrointestinal tract. Frontiers in Cellular and Infection Microbiology. 4: 9.

Gammariello, D., Di Giulio, S., Conte, A. y Del Nobile, M.A. 2008. Effects of natural compounds on microbial safety and sensory quality of Fiordi Lattecheese. Journal of Dairy Science. 91 (11): 4138-4146.

Hoet, P.H., Nemery, B. y Napierska, D. 2013. Intracellular oxidative stress caused by nanoparticles: What do we measure with the dichlorofluorescein assay?. Nano Today. 8 (3): 223-227.

Klatt, E.C., Pavlova, Z., Teberg, A.J. y Yonekura, M.L. 1986. Epidemic neonatal listeriosis at autopsy. Hum Pathol.17: 1278-1281.

Kontogianni, V.G., Charisiadis, P., Primikyri, A., Pappas, C.G., Exarchou, V., Tzakos, A.G. y Gerothanassis, I.P. 2013. Hydrogen bonding probes of phenol–OH groups. Organic & Biomolecular Chemistry. 11(6): 1013-1025.

Lee, K.H., Kim, J.H., Lim, D.S. y Kim, C.H. 2000. Anti-leu-kemic and anti-mutagenic effects of di (2-ethylhexyl) phthalate isolated from Aloe vera Linne. Journal of Pharmacy and Pharmacology. 52: 593-598.

Mankidy, R., Wiseman, S., Ma, H. y Giesy, J.P. 2013. Biological impact of phthalates. Toxicology Letters. 217 (1): 50-58.

Martínez-Camacho, A.P., Cortez-Rocha, M.O., Graciano-Verdugo, A.Z., Rodríguez-Félix, F., Castillo-Ortega, M.M., Burgos- Hernández, A., Esquerra-Brauer J.M. y Plascencia-Jatomea, M. 2013. Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid. Carbohydrate Polymers. 91 (2): 666-674.

Moreno-Félix, C., Wilson-Sánchez, G., Cruz-Ramírez, S.G., Velázquez-Contreras, C., Plascencia-Jatomea, M., Acosta, A., Machi-Lara, L., Aldana-Madrid, M.L., Ezquerra-Brauer, J.M., Rocha-Alonzo, F. y Burgos-Hernández, A. 2013. Bioactive lipidic extracts from octopus (Paraoctopus limaculatus): antimutagenicity and antiproliferative studies. Evidence- Based Complementary and Alternative Medicine. 1-12.

Osorio, J. 2005. Análisis del procedimiento para la determinación de la DL50 (dosis letal media) a través del método de Probit en un bioensayo. Revista de Investigaciones Universidad de Quindío. 4 (12).

Ozturk, I., Tornuk, F., Sagdic, O. y Kisi, O. 2012. Application of nonlinear models to predict inhibition effects of various plant hydrosols on Listeria monocytogenes inoculated on fresh-cut apples. Foodborne Pathogens and Disease. 9 (7): 607-616.

Palma-Guerrero, J., Huang, I.C., Jansson, H.B., Salinas, J., Lopez- Llorca, L.V. y Read, N.D. 2009. Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genetics and Biology. 46 (8): 585-594.

Pedersen, J.A. 2000. Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. Biochemical Systematics and Ecology. 28: 229–253.

Peèiulytë, D. 2005. Effect of tea tree essential oil on microorganisms 2. Evaluation of fungal reaction to tea tree oil under different conditions. Biologija. 2 (2): 21-28.

Peña, A., Sánchez, N.S. y Calahorra, M. 2013. Effects of chitosan on Candida albicans: conditions for its antifungal activity. BioMed Research International. Plascencia-Jatomea, M., Viniegra, G., Olayo, R., Castillo-Ortega, M.M. y Shirai, K. 2003. Effect of chitosan and temperature

on spore germination of Aspergillus niger. Macromolecular

Bioscience. 3 (10): 582-586.

Pretsch, E., Bühlmann, P., Affolter, C., Pretsch, E., Bhuhlmann, P. y Affolter, C. 2009. Struture determination of organic compounds. Springer. 282.

Quian, Z.J., Kang, K.H. y Kim, S.K. 2012. Isolation and antioxidant activity evaluation of two new phthalate derivatives from seahorse, Hippocampus kuda Bleeler. Biotechnology and Bioprocess Engineering. 17: 1031-1040.

Rosas-Burgos, E.C., Cortez-Rocha, M.O., Cinco-Moroyoqui, F.J., Robles-Zepeda, R.E., López-Cervantes, J., Sánchez- Machado, D.I. y Lares-Villa, F. 2009. Antifungal activity in vitro of Baccharis glutinosa and Ambrosia confertiflora extracts on Aspergillus flavus, Aspergillus parasiticus and

Fusarium verticillioides. World Journal of Microbiology and Biotechnology. 25 (12): 2257- 2261.

Saeed, M.K., Deng, Y., Parveen, Z., Dai, R., Ahmad, W. y Yu, Y. 2007. Studies on the chemical constituents of Torreya grandis Fort. Ex Lindl. Journal of Applied Sciences. 7 (2): 269-273.

Sagdic, O., Ozturk, I. y Tornuk, F. 2013. Inactivation of nontoxigenic and toxigenic Eschrichia coli O157: H7 inoculated on minimally processed tomatoes and cucumbers: Utilization of hydrosols of Lamiaceae spices as natural food sanitizers. Food Control. 30 (1): 7-14.

Schlech, W. 1996. Overview of listeriosis. Food Control. 7 (4): 183-186.

Silverstein, R.M., Webster, F.X. y Kiemle, D.J. 2007. Spectroscopic methods for identification of organic compounds. Journal of Chemical Education. 84 (12).

Tornuk, F., Ozturk, I., Sagdic, O., Yilmaz, A. y Erkmen, O. 2014. Application of predictive inactivation models to evaluate survival of Staphylococcus aureus in fresh-cut apples treated with different plant hydrosols. International Journal of Food Properties. 17 (3): 587-598.

Toroglu, S. 2011. In vitro antimicrobial activity and synergistic/antagonistic effect of interactions between antibiotics and some spice essential oils. Journal of Environmental Biology. 32 (1): 23-29.

Ulukanli, Z., KarabörklÑÑü, S., Cenet, M., Sagdic, O., Ozturk, I. y Balcilar, M. 2013. Essential oil composition, insecticidal and antibacterial activities of Salvia tomentosa Miller. Medicinal Chemistry Research. 22 (2): 832-840.

Yokoyama, H., Danjo, T., Ogawa, K. y Wakabayashi, H. 1997. A vital staining technique with fluorescein diacetate (FDA) and propidium iodide (PI) for the determination of viability of myxosporean and actinosporean spores. Journal of Fish Diseases. 20 (4): 281-286.

Descargas

Publicado

2018-09-07

Cómo citar

García-Romo, J. S., Yépiz-Gómez, M. S., Plascencia-Jatomea, M., Santacruz- Ortega, H. D. C., Burgos-Hernández, A., García De León, J. R., … Borboa-Flores, J. (2018). COMPOUNDS WITH in vitro ANTIBACTERIAL ACTIVITY FROM HYDROSOL OF Lippia palmerI AND MORPHOMETRIC CHANGES ON Listeria monocytogenes. Biotecnia, 20(3), 35–42. https://doi.org/10.18633/biotecnia.v20i3.713

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.