Empleo de un evaporador de película descendente agitada y su efecto sobre el perfil polifenólico de infusiones de salvilla (Buddleja scordioides)

Autores/as

  • Jesús Omar Díaz-Rivas TecNM/InstitutoTecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México
  • Clarissa Esparza-Carrillo TecNM/InstitutoTecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México
  • José Alberto Gallegos-Infante TecNM/InstitutoTecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México
  • Nuria Elizabeth Rocha-Guzmán TecNM/InstitutoTecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México
  • Rubén Francisco González-Laredo TecNM/InstitutoTecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México
  • Martha Rocio Moreno-Jiménez TecNM/InstitutoTecnológico de Durango, Blvd. Felipe Pescador 1830 Ote., Col. Nueva Vizcaya, 34080 Durango, Durango, México

DOI:

https://doi.org/10.18633/biotecnia.v21i2.936

Palabras clave:

DPPH, infusiones concentradas, polifenoles, procesamiento térmico, salvilla

Resumen

El consumo de infusiones ha mostrado un incremento, en los últimos años, entre ellas está la infusión de Buddleja scordioides, conocida como salvilla. Para responder al incremento en la demanda, es necesario facilitar su manejo, lo cual se logra mediante el empleo de concentrados, lo que involucra tratamiento térmico que puede degradar compuestos inestables al calor. El objetivo del presente trabajo fue evaluar el efecto del tratamiento de concentración de una infusión de salvilla sobre su perfil fitoquímico. Infusiones al 1% de salvilla (0.1o Brix) fueron concentradas en un evaporador de película descendente hasta 0.2 oBrix. Se evaluaron pH, oBrix, sólidos totales, color (L*, a*, b*), fenoles y flavonoides totales, atrapamiento de radicales DPPH y composición química mediante UPLC-ESI-MS/MS. No se observaron diferencias de pH entre concentrados e infusiones. Se encontraron diferencias en cuanto a color, siendo menos luminoso el concentrado. Se detectó un incremento en el contenido fenólico de los concentrados, a la par de una disminución en flavonoides asociada a una posible degradación del galactósido hiperósido, esto observado mediante espectrometría de masas y relacionado con el incremento de acacetina y quercetina y sus derivados en concentrados. Se observó una disminución en la capacidad de atrapamiento de radicales libres en concentrados, asociado con una posible actividad prooxidante.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acevedo, J. A., Castañeda, C. M. C., Benitez, F. J. C., Durán, D. A., Barroso, V. R., Martínez, C. G., Muñoz, L.J.L., Martínez, C.A. & de Vivar, A. R. 2005. Photoprotective activity of Buddleja scordioides. Fitoterapia, 76, 301-309.Akhter, S., Hussain, A., & Iman, S. 2010. Preparation and evaluation of physicochemical characteristics of herbal drink concentrate. Pakistan Journal of Biochemistry and Molecular Biology, 43, 149-152.

Almeida, I. F., Maleckova, J., Saffi, R., Monteiro, H., Góios, F., Amaral, M. H., Costa, P.S., Garrido, J., Silva, P., Pestane, N. & Bahia, M. F. 2015. Characterization of an antioxidant surfactant-free topical formulation containing Castanea sativa leaf extract. Drug Development and Industrial Pharmacy, 41, 148-155. Buchner, N., Krumbein, A., Rohn, S., & Kroh, L. W. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Communications in Mass Spectrometry, 20, 3229- 3235.

Cheng-ping, L. I. U., Yuan-er, Z. E. N. G., & Feng, G. A. O. 2011. Study on heat stability of Linarin in Chrysanthemum indicum. Pharmacy Today, 2, 11 – 14.

Deng, H. X., Pan, H. Y., Chen, Z. Q., Zhang, Y. F., & Wang, L. H. 2016. Modeling of thermal degradation of linarin during concentration process. China Journal of Chinese Materia Medica, 41, 1380-1382.

Dewanto, V., Wu, X., & Liu, R. H. 2002. Processed sweet corn has higher antioxidant activity. Journal of Agricultural and Food Chemistry, 50, 4959-4964.

Díaz Rivas, J. O., Herrera Carrera, E., Gallegos Infante, J. A., Rocha Guzmán, N. E., González Laredo, R. F., Moreno Jiménez, M. R., Ramos-Gomez, M., Reynoso-Camacho, R., Larrosa- Perez, M., Gallegos-Corona, M.A. 2015. Gastroprotective potential of Buddleja scordioides Kunth Scrophulariaceae infusions; effects into the modulation of antioxidant enzymes and inflammation markers in an in vivo model. Journal of Ethnopharmacology, 169, 280-286.Díaz-Rivas, J. O., González-Laredo, R. F., Chávez-Simental, J. A., Montoya- Ayón, J. B., Moreno-Jiménez, M. R., Gallegos-Infante, J. A., & Rocha-Guzmán, N. E. 2018. Comprehensive characterization of extractable phenolic compounds by UPLC-PDA-ESI-QqQ of Buddleja scordioides plants elicited with salicylic acid. Journal of Chemistry, vol. 2018, Article ID 4536970, 10 pages.

Dimitrijevic, T. A. F., & O’connell, J. E. 2008. Tea extracts. U.S. Patent Application 20080254174A1.

Fadda, A., Serra, M., Molinu, M. G., Azara, E., Barberis, A., & Sanna, D. 2014. Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical. Journal of Food Composition and Analysis, 35, 112- 119.

Galicia, R. M., Verde, R., Ponce, E., González, R. O., Saucedo, C., & Guerrero, I. 2008. Estabilidad de licopeno en tomates cv. Saladette (Lycopersicon esculentum Mill.) sujetos a distintas condiciones de almacenamiento. Revista Mexicana de Ingeniería Química, 7, 253-262.

Gancel, A. L., Feneuil, A., Acosta, O., Pérez, A. M., & Vaillant, F. 2011. Impact of

industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International, 44, 2243-2251.

Gutiérrez-Rebolledo, G. A., Estrada-Zúñiga, M. E., Nieto-Trujillo, A., Cruz-Sosa, F., & Jiménez-Arellanes, M. A. 2018. In vivo anti-inflammatory activity and acute toxicity of methanolic extracts from wild plant leaves and cell suspension cultures of Buddleja cordata kunth (buddlejaceae). Revista Mexicana de Ingeniería Química, 17, 317-330.

Jacob, K., García-Alonso, F. J., Ros, G., & Periago, M. J. 2010. Stability of carotenoids, phenolic compounds, ascorbic acid and antioxidant capacity of tomatoes during thermal processing. Archivos latinoamericanos de nutricion, 60, 192 – 197.

Joubert, E., & Schultz, H. 2012. Production and quality aspects of rooibos tea and related products. A review. Journal of Applied Botany and Food Quality, 80, 138-144.

Khan, H., & Rauf, A. 2014. Medicinal plants: economic perspective and recent

developments. World Applied Science Journal, 31, 1925 - 1929.

Kim, E. S., Liang, Y. R., Jin, J., Sun, Q. F., Lu, J. L., Du, Y. Y., & Lin, C. 2007. Impact of heating on chemical compositions of green tea liquor. Food Chemistry, 103, 1263-1267.

Lehmberg, G. L., & Ma, S. X. 2000. Tea concentrate prepared by enzymatic extraction and containing xanthan gum which is stable at ambient temperature. U.S. Patent No. 6,024,991.

Lehmberg, G. L., Spisak, M. J., Gobbo, S. A., & Kemly-Ellingham, M. M. 2002. Tea concentrate. U.S. Patent No. 6,413,570.

Li, S., Lo, C. Y., Pan, M. H., Lai, C. S., & Ho, C. T. 2013. Black tea: chemical analysis and stability. Food & Function, 4, 10-18.

Łozak, A., Sołtyk, K., Ostapczuk, P., & Fijałek, Z. 2002. Determination of selected trace elements in herbs and their infusions. Science of the Total Environment, 289, 33-40.

Manzocco, L., Anese, M., & Nicoli, M. C. 1998. Antioxidant properties of tea extracts as affected by processing. LWT-Food Science and Technology, 31, 694-698.

Martínez-Flórez, S., González-Gallego, J., Culebras, J. M., & Tuñón, M. 2002. Los flavonoides: propiedades y acciones antioxidantes. Nutrición Hospitalaria, 17, 271-278.

Ochanda, S. O. 2012. A review of development of the Tea (Camellia sinensis) industry in Kenya and possible areas of exploitation for value addition. African Journal of Horticultural Science, 6, 1 – 10.

Paquay, J. B., Haenen, G. R., Stender, G., Wiseman, S. A., Tijburg, L. B., & Bast, A. 2000. Protection against nitric oxide toxicity by tea. Journal of Agricultural and Food Chemistry, 48, 5768- 5772.

Radoiu, M., Chantreux, D., & Marchiori, B. 2017. Scale-up of one-step synthesis of

acacetin and apigenin using 915MHz microwaves. Chemical Engineering and Processing: Process Intensification, 114, 39-45.Raffo, A., Baiamonte, I., Nardo, N., & Paoletti, F. 2007. Internal quality and antioxidants content of cold-stored red sweet peppers as affected by polyethylene bag packaging and hot water treatment. European Food Research and Technology, 225, 395-405.

Rocha‐Guzmán, N. E., Medina‐Medrano, J. R., Gallegos‐Infante, J. A., Gonzalez‐Laredo, R. F., Ramos‐Gómez, M., Reynoso‐ Camacho, R., Guzman-Maldonado, H. & González‐Herrera, S. M. 2012. Chemical evaluation, antioxidant capacity, and consumer acceptance of several oak infusions. Journal of Food Science, 77, c162-c166.

Roy, M. K., Koide, M., Rao, T. P., Okubo, T., Ogasawara, Y., & Juneja, L. R. 2010. ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: relationship between total polyphenol and individual catechin content. International Journal of Food Sciences and Nutrition, 61, 109-124.

Sha-sha, W. A. N. G., & Li, M. A. 2009. Progress in processing technology of tea drinks. The Beverage Industry, 4, 3–7.

Thome, J. R. 1999. Falling film evaporation: state-of-the-art review of recent work. Journal of Enhanced Heat Transfer, 6, 263-278.

Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46, 4113-4117.

Descargas

Publicado

2019-04-01

Cómo citar

Díaz-Rivas, J. O., Esparza-Carrillo, C., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., González-Laredo, R. F., & Moreno-Jiménez, M. R. (2019). Empleo de un evaporador de película descendente agitada y su efecto sobre el perfil polifenólico de infusiones de salvilla (Buddleja scordioides). Biotecnia, 21(2), 106–113. https://doi.org/10.18633/biotecnia.v21i2.936

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.