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ABSTRACT
Dinoflagellate Prorocentrum lima blooms produce toxins 
causing significant health risks when present in mollusks 
consumed by humans; thus, short-term exposure and de-
puration periods were studied to assess the induced effects 
on Crassostrea gigas physiological system. Three treatments 
were evaluated: control diet with 2 × 106 cell/mL Chaetoceros 
muelleri; T1 oysters fed with P. lima (6 × 103 cell/mL); T2 oys-
ters fed with P. lima (6 × 103 cell/mL) and C. muelleri (2 × 106 
cell/mL) in day 13 exposure, followed by 15 days depuration. 
Differentiation and hemocyte count were examined, as well 
as hemolymph parameters (protein, glucose, lactate, choles-
terol, and triglycerides). Accumulation of the okadaic acid in 
C. gigas digestive gland was quantified after 13 days of expo-
sure. A significant decrease in total hemocyte, granulocyte,
and hyalinocyte counts was detected in the treatments with
P. lima after 13 days exposure, followed by a small increase
during depuration; C. gigas physiological response against
the dinoflagellate was also affected with significant differen-
ces in glucose, lactate, cholesterol, and triglyceride compared 
between exposure and depuration. The experimental results
suggest a detriment to C. gigas physiological response by P. 
lima exposure with recovery in hemocyte count after 8 days
with control diet (depuration phase).
Keywords: Harmful algae; Crassostrea gigas; Prorocentrum
lima; hemocyte; physiological response; immune system.

RESUMEN
El dinoflagelado Prorocentrum lima produce toxinas dañinas 
para la salud humana por consumo de moluscos; la exposi-
ción y depuración de Crassostrea gigas fue analizada para co-
nocer los efectos en el sistema fisiológico. Tres tratamientos 
fueron evaluaron: dieta control, 2 x 106 células/mL Chaetoce-
ros muelleri; T1 alimentados con P. lima (6 x 103 células/mL); 
T2 alimentados con P. lima (6 x 103 células/mL) y C. muelleri 
(2 x 106 células/mL) por 13 días, seguido de una fase de 15 
días de depuración. Se examinó diferenciación y recuento 
de hemocitos, así como parámetros en hemolinfa: proteína, 
glucosa, lactato, colesterol y triglicéridos; cuantificación de la 

toxina ácido okadaico en glándula digestiva de C. gigas des-
pués de 13 días de exposición. En los tratamientos con P. lima 
se detectó disminución significativa en hemocitos totales, 
granulocitos e hialinocitos. El sistema fisiológico de C. gigas 
también se vio afectado, reportando diferencias en la con-
centración de glucosa, lactato, colesterol y triglicéridos entre 
las fases de exposición y depuración. El sistema fisiológico de 
C. gigas se ve afectado como consecuencia de la exposición
a P. lima, además se reporta una recuperación en hemocitos
después de 8 días con la dieta control (fase de depuración).
Palabras clave: Alga nociva, Crassostrea gigas, Prorocentrum 
lima, hemocitos, respuesta fisiológica, sistema inmune.

INTRODUCTION
Microalgal bloom events, also known as harmful algal blooms 
(HABs), are cellular proliferation of toxic or noxious algal spe-
cies potentially harmful to aquatic animals, consequentially 
affecting food web interaction (Neves et al., 2021). HABs can 
occur by several factors, including temperature increase, 
coastal eutrophication, wind, and human dispersal (Glibert 
and Burkholder, 2006; Gobler, 2020). 

HABs development in aquatic environments results in 
accumulation of phycotoxins that can be captured by sus-
pension feeders. Furthermore, the excessive accumulation 
of HABs could induce damage to the animal respiratory 
system, resulting in death, and high biomass bloom can 
result in oxygen depletion (Karlson et al., 2021). HABs consist 
of multiple algal species capable of producing a variety of 
bioactive compounds and toxins, which are responsible for 
human poisoning syndromes related to crustacean shellfish, 
mollusk, and fish consumption. Toxins are known as paralytic, 
neurotoxic, amnesic, azaspiracid, and diarrhetic shellfish poi-
soning according to their effects on human health (Anderson 
et al., 2021; Lad et al., 2022; Lassudrie et al., 2020). 

Filter-feeding bivalves represent an important compo-
nent of the coastal ecosystem; specifically, Crassostrea gigas is 
one of the most important shellfish produced worldwide due 
to adaptability, rapid growth rate, and nutritional value (Bai et 
al., 2024). However, C. gigas farming is frequently affected by 
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toxic species produced by algae of the genus Prorocentrum, 
Dinophysis, Ostreopsis, and Gambierdiscus (Gaillard et al., 
2020; Accoroni et al., 2024; Neves et al., 2019; Economou et al., 
2007). The benthic dinoflagellate Prorocentrum lima is widely 
distributed in tropical and temperate regions (Nishimura et 
al., 2020) and produces okadaic acid and dinophysistoxins, 
causing gastrointestinal symptoms (Grigoriyan et al., 2024). 
P. lima induces diarrhetic shellfish poisoning (DSP) in humans 
by the consumption of bivalves contaminated with toxins, 
due to the accumulation of toxins produced by dinoflagella-
te (Ayache et al., 2023; Faustino et al., 2021). DSP toxins are 
lipophilic polyether compounds, including okadaic acid (OA), 
dinophysistoxin-1 (DTX1), DTX2, and other derivative forms 
(Gerssen et al., 2010). Lipophilic toxins are captured and di-
gested to accumulate in the digestive gland of filter-feeding 
mollusks, and even concentrations as low as 5 cells/mL may 
accumulate toxins to induce DSP in humans (Yasumoto et al., 
1984; Huguet et al., 2020). 

Mollusk bivalves have an innate immune system, based 
on nonspecific reactions from cellular and humoral respon-
ses. The cellular part is formed by hemocytes, which are a 
key factor in the immune system together with the barrier 
tissues, synthesizing humoral factors with antimicrobial acti-
vity (Tan et al., 2020; Andreyeva et al., 2022). Hemocytes are 
involved in phagocytosis, encapsulation, nodule formation, 
cytotoxicity, and antigenic self/non-self discrimination (Ales-
ci et al., 2023). Therefore, the quantification of the circulating 
hemocytes is a useful determination of the immune system 
response (Faustino et al., 2021; Andreyeva et al., 2021). 

Bivalve exposure to P. lima induces damage to the di-
gestive system, negative effects on feeding, respiratory rate, 
and alteration in the circulating hemocyte concentration 
(Neves et al., 2019; Faustino et al., 2021). Nonetheless, lack of 
information still exists of the oyster physiological response 
to dinoflagellate toxins, thus, hemolymph parameter con-
centrations and hemocyte count could serve as a valuable 
tool for rapid quantification of the physiological response to 
stress in C. gigas. Therefore, the present study aims to des-
cribe C. gigas cellular and immune physiological response to 
DPS toxin producer dinoflagellate P. lima. 

MATERIAL AND METHODS
Oyster acclimatization
Healthy adults of the Japanese oyster Crassostrea gigas were 
obtained with an initial weight of 40 ± 5 g, and 50 ± 10 mm 
shell length, from a local oyster farm (Estero la Cruz, Kino Bay, 
Sonora, Mexico). Oysters were transported to the laboratory 
to be cleaned of epibionts. The animals were maintained in 
50-L tanks with controlled salinity (34 practical salinity units, 
PSU), and temperature (24 ± 1°C) for a 15-day acclimation 
period. Oysters were fed with Chaetoceros muelleri daily, 
according to Helm et al. (2004). 

Algal culture 
The benthic dinoflagellate Prorocentrum lima (strain PLHV-
4) was obtained from CIBNOR (Centro de Investigaciones 

Biológicas del Noroeste, S.C). P. lima was cultivated using mo-
dified F/2 medium + Se in Fernbach flasks and glass carboy, 
maintained at 22 °C ± 1 °C, light/dark= 12:12, and 200 µmol 
photons m−2 s-1 light intensity, according to Núñez-Vázquez 
et al. (2003). P. lima strain can produce OA = 2,041 pg/cells, 
DTX1 = 1.33 pg/cells, and DTX2 = 0.09 pg/cells of toxins.

The dinoflagellate P. lima was harvested at the late 
exponential growth phase at day 20 (determined before the 
experimental phase) to feed the oysters, whose cell density 
was quantified after cell fixation with Lugol’s solution (Gifford 
and Caron, 2000), using a 1 mL Sedgwick-Rafter counting 
chamber (Olympus BX41, Tokyo, JP) under a microscope. 

The control microalgae used for the present experiment 
was Chaetoceros muelleri, provided by the Universidad de 
Sonora (DICTUS), and cultured in Bubble column photobio-
reactors (PBRs) using F/2 medium (Guillard and Ryther, 1962), 
with constant temperature 22 ± 1 °C and illumination 250 
µmol photons m-2 s-1. 

Experimental exposure and sampling
After the acclimation period, oysters were fed once a day for 
13 days of trial in three treatments: Control or non-toxic diet 
with 2 x 106 cell/mL of C. muelleri; T1 oysters fed with P. lima 
cells only (6 × 103 cell/mL); and T2 oysters fed with a combina-
tion of P. lima (6 × 103 cell/mL) + C. muelleri (2 × 106 cell/mL). 
Dinoflagellate concentrations were based on field observa-
tion data of HAB events in the Gulf of California (Hallegraeff 
et al., 1995). The exposure effects of the toxic dinoflagellate P. 
lima on C. gigas were examined in triplicate samples for each 
treatment, using 20 oysters by replica, placed in 10-L plastic 
containers with constant aeration. 

During the exposure phase, four oysters from each ex-
perimental unit were sampled randomly on days 1, 5, 10, and 
13. For the depuration phase, four oysters from each experi-
ment were collected on days 3, 6, and 15 after the dinoflage-
llate exposure. Sampled organisms of each experimental unit 
were replaced by the same number of organisms (previously 
marked, and kept under the same experimental conditions) 
to maintain the number of organisms constant in each unit; 
additionally, each experimental unit received 100% water 
exchange every 24 h, before feeding, and a P. lima count was 
performed to record the consumption percentage. Oyster 
mortality, feeding behavior, hemocyte count, and cell-free 
hemolymph metabolite quantification were evaluated. 

To determine okadaic acid toxin accumulation in C. 
gigas after 13 days of feeding with P. lima, the digestive gland 
of four animals was removed and lyophilized. Okadaic acid 
extraction was performed according to Lee et al. (1987) with 
some modifications, while okadaic acid quantification was 
performed by high-performance liquid chromatography 
(HPLC) analysis using Agilent 1200 Series Liquid Chroma-
tographer, with a diode array detector (DAD) (240 nm), 
fluorescence detector (FLD) (266 nm excitation and 316 nm 
emission), and an ultrasep C18 column (250×5 mm, Agilent 
Bonus); a mobile phase flux of 1.250 mL/min (acetonitrile: 
water 80:20) and 20 μL of the sample were injected (Pinto-
Silva et al., 2005).
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Hemocyte count 
Hemolymph was obtained from the oyster pericardium using 
a 1-mL syringe; a hemolymph pool was prepared for each 
replicate. Immediately after sampling, 100 μL of hemolymph 
from 3 individual oysters were added to 900 μL of anticoa-
gulant (sodium citrate, pH 7.5), and the rest of the samples 
were centrifuged at 9000g for 5 min (4°C) to separate plasma 
for analysis. Hemocytes were counted using a Neubauer 
chamber; the granulocyte and hyalinocyte cell classification 
was performed according to the morphologic parameters 
under a light microscope (Olympus BX41) (Faustino et al., 
2021). Total hemocyte count was expressed as the number of 
hemocytes (× 106) mL-1 of hemolymph.

Physiological analysis
The plasmatic parameter concentrations, such as protein, 
glucose, lactate, cholesterol, and triglycerides were quan-
tified using the commercial Home Testing Kits RANDOX® 
(Great Britain), following the manufacturer’s specifications, 
with some modifications. Absorbance was read in a micro-
plate scanner (Bio Rad, iMark ™), according to Sánchez-Paz 
et al. (2007). 

Statistical analysis
Data were analyzed using a normality test; homogeneity of 
variances was verified by Leven’s test. A two-way analysis of 
variance (ANOVA) followed by Tukey’s post-hoc test was used 
to compare metabolite concentration and hemocyte counts 
among treatments and time. Differences were considered 
significant when P < 0.05. Data were expressed as mean ± 
standard deviation (SD). Statistical analyses were performed 
with JMP® Pro 16.0.0 Software.

RESULTS AND DISCUSSION
Crassostrea gigas feeding behavior 
Oysters filtered and ingested both microalgal cells. The 
control group (fed exclusively with C. muelleri) maintained 
a normal feeding behavior; no closure of valves or mantle 
retraction was observed, and the cilia were observed outside 
the valves during feeding; additionally, a high-water clarifica-
tion and rich stool production was recorded during the trial. 
The oysters ingested 100% of C. muelleri cells, and up to 93% 
of P. lima (Table 1). 

On the other hand, oysters fed with the dinoflagellate 
P. lima, produced fecal pellets partially degraded, indicating 
a partial degradation of the cells. However, a change in C. 
gigas feeding behavior with P. lima diets was observed at 
the beginning of the depuration phase with a delay in feed 
captured (C. muelleri) by the oysters; after two days of depu-
ration, the oysters were capable of recovery and capture all 
feed in the first hours. 

Quantification of the toxin Okadaic acid, was determi-
ned in the digestive gland of oysters after 13 days of feeding 
C. gigas with P. lima (T1 and T2), reporting 250 ng OA.g-1 for 
the P. lima treatment group (T1), and 200 ng OA.g-1 for the C. 
muelleri + P. lima treatment (T2).

Effects of Prorocentrum lima exposure in Crassostrea 
gigas hemocytes 
Total hemocyte count (THC) reported significant differences 
between exposure time and experimental groups (P < 0.05). 
The control group showed the highest hemocyte concen-
tration with no significant variation during the trial (Figure 
1A). Nevertheless, groups fed with P. lima (T1) and P. lima + C. 
muelleri (T2), reported differences compared to the control 
group and during the time with a decrease in hemocyte con-
centration, reaching the lowest concentration on day 13 of 
the dinoflagellate exposure. Furthermore, a recovery in the 
hemocytes was detected during the depuration phase (15D) 
in T1 and T2. 

The granulocyte concentration reported significant 
differences (P < 0.05) between treatments and during the 
exposure and depuration phases (Figure 1 B). The control 
group presented the highest granulocyte concentration 
compared to T1 and T2, and no differences were reported 
between T1 and T2 during the exposure and depuration 
phases. Conversely, the hyalinocyte concentration reported 
significant differences between the control group with the 
highest concentrations, and the groups exposed to P. lima (P 
< 0.05) (Figure 1 C); however, no differences were reported 
during the time among treatments. Finally, the lowest con-
centration of granulocytes and hyalinocytes was reported on 
day 13 of the exposure phase with an increase on day 15 of 
the depuration phase.

Physiological analysis in Crassostrea gigas exposed to 
Prorocentrum lima 
Alterations in C. gigas plasma parameters were detected 
after P. lima exposure, except for protein concentration, 
which remained constant during the dinoflagellate expo-
sure phase with no significant differences (P < 0.05), and an 
average of 25.8 ± 0.8 mg/mL (Figure 2A). On the other hand, 
glucose concentration in C. gigas plasma reported significant 
differences (P < 0.05) between exposure and depuration 

Table 1. Consumption percentage of Prorocentrum lima after 24 hours 
feeding of Crassostrea gigas with T1 (6 ×103 cell/mL of P. lima), and T2 (C. 
muelleri + 6 ×103 cell/mL of P. lima).
Tabla 1. Porcentaje de consumo en Prorocentrum lima despues de alimentar 
Crassostrea gigas por 24 horas, con T1 (6 ×103 cel/mL de P. lima), y T2 (C. 
muelleri + 6 ×103 cel/mL de P. lima).

Day     T1 (%)      T 2 (%)
1  98  ± 0.1  97   ± 0.7
2  95  ±  1.3  95   ± 0.6
3  97  ±  0.9  95   ± 1.3
4  97  ±  1.2  93   ± 0.7
5  98  ±  0.5  94   ± 0.2
6  98  ±  0.6  94   ± 0.2
7  96  ±  0.7  95   ± 1.0
8  97  ±  1.2  96   ± 1.3
9  94  ±  1.4  93   ± 1.1

10  96  ±  1.0  95   ± 1.2
11  97  ±  0.3  96   ± 0.5
12  96  ±  0.4  97   ± 0.6
13  95  ±  1.6  98   ± 0.1
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Figure 1. Total circulating hemocytes (TCH) (A), granulocytes (B) and hyalinocytes (C) counts in the hemolymph of 
Crassostrea gigas during an exposure phase with the dinoflagellate Prorocentrum lima (13 days) and a depuration 
phase (15 days). Letters indicates significant differences between exposure and depuration phases (p < 0.05); the 
mean ± standard deviation (SD) is indicated. 
Figura 1. Recuento total de hemocitos circulantes (TCH) (A), Granulocitos (B) hialinocitos (C) en la hemolinfa 
de Crassostrea gigas, durante una fase de exposición al dinoflagelado Prorocentrum lima (13 días) y una fase de 
depuración (15 días). Letras indican diferencias significativas entre las fases de exposición y depuración (p < 0.05); 
se indica la media ± desviación estándar 
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phases; nonetheless, no differences were reported among 
treatments. After 5-day exposure to the dinoflagellate, gluco-
se concentration increased in T1 and T2; the lowest glucose 
concentration was reported in the control group at day 15, 
with a concentration of 1.05 mg/mL (Figure 2B).

Lactate levels on plasma reported significant differences 
(P < 0.05) with the highest lactate concentrations on day 5 of 
the exposure phase for T1 (0.34 mg/mL), while, a significant 
decrease was reported on day 8 of the depuration phase in 
T2 (0.29 mg/mL) (Figure 3A). Additionally, a negative corre-
lation of r = - 0.2 was detected between lactate and glucose 
parameters during the exposure phase.

Cholesterol concentration in C. gigas plasma reported 
significant differences over time of exposure to P. lima, with 
the lowest concentration on day one in T1; after the exposure 

phase, a significant increase was reported in all experimental 
groups (Figure 3B). Similarly, a significant increase (P < 0.05) 
was reported in triglyceride concentration on day 15 of the 
depuration phase, while, the lowest one was reported on day 
10 of the dinoflagellate exposure phase (0.32 mg/mL) (Figure 
4).

DISCUSSION
Oysters filtered and ingested both microalgal cultures used 
in the experiment, producing fecal pellets containing partia-
lly degraded cells of the dinoflagellate P. lima in the form of 
pseudo-feces. Similar C. gigas feeding behavior exposed to P. 
lima and reduction of the clearance rate were reported pre-
viously (de Romero-Geraldo et al., 2014; de Romero-Geraldo 
et al., 2016; García-Lagunas et al., 2019). This phenomenon, 
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Figure 2. Protein (A) and glucose (B) values in Crassostrea gigas plasma, during an exposure phase with 
the dinoflagellate Prorocentrum lima (13 days) and a depuration phase (15D depuration days). Letters 
indicates significant differences between exposure and depuration phases (p ˂ 0.05); the mean ± SD is 
indicated.
Figura 2. Valores de proteína (A) y glucosa (B) en plasma de Crassostrea gigas, durante una fase de 
exposición al dinoflagelado Prorocentrum lima (13 días) y una fase de depuración (15D días). Letras 
indican diferencias significativas entre las fases de exposición y depuración (p < 0.05); se indica la media 
± desviación estándar.

5



Volume XXVII

 Medina-Felix et al. / Biotecnia 27:e1103, 2025

 

m
g/

m
L

Days
Chaetoceros muelleri control diet

Chaetoceros muelleri Prorocentrum lima combined diet T2 
Prorocentrum lima diet T1 

A

B

A

A

m
g/

m
L

B

C

BC

BC

D

B B B B

AB

AB

A

Figure 3. Values of plasma lactate (A) and cholesterol (B) in Crassostrea gigas, during an exposure phase 
with the dinoflagellate Prorocentrum lima (13 days) and a depuration phase (15D depuration days). 
Letters indicates significant differences between exposure and depuration phases (p ˂ 0.05); the mean 
± SD is indicated.
Figura 3. Valores de lactato (A) y colesterol (B) en plasma de Crassostrea gigas, durante una fase de 
exposición al dinoflagelado Prorocentrum lima (13 días) y una fase de depuración (15D días). Letras 
indican diferencias significativas entre las fases de exposición y depuración (p < 0.05); se indica la media 
± desviación estándar.

where the harmful algal cell can pass as a viable cell through 
the digestive system and be introduced again into the envi-
ronment, is a real challenge to mollusk aquaculture (Hégaret 
et al., 2007). 

No mortality was observed in oysters by the toxic 
dinoflagellate exposure. Evidence suggests that bivalves 
can survive and develop during HABs by the action of the 
immune system responding to DSP produced by dinoflage-
llates, activating protection against okadaic acid (Hégaret 
et al., 2011; Mello et al., 2013). Similarly, previous research 
demonstrates that C. gigas exposure to 30 × 103 cell/mL of P. 

lima did not result in mortalities (de Jesus Romero-Geraldo et 
al., 2014; Tan et al., 2023; García-Lagunas et al., 2019). 

Diarrhetic shellfish toxin accumulation occurs mostly in 
the digestive gland; the amount of toxins accumulated by 
mollusks depends on their ingestion rates, particle capture, 
and capacity for selective feeding (do Prado Leite et al., 2021; 
Bricelj and Shumway, 1998). The okadaic acid concentration 
reported in C. gigas digestive gland after 13-day exposure to 
P. lima, are above the regulatory limit for human consump-
tion (160 ng OA per gram of meat) (Moreira-González et al., 
2022). In the same way, okadaic acid values are similar to 
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those reported by Mafra et al. (2015), 183.3 ng OA.g-1 in C. 
gigas visceral tissue exposed to the dinoflagellate Dinophysis 
acuminata (13 750 cell/L) after two weeks.

Hemocytes modulate the invertebrate immune system 
as a key immune response component, responsible for pha-
gocytosis, recognition, and cytotoxic reactions (Weng et al., 
2022). Additionally, hemocytes participate in biological pro-
cesses, such as shell production, nutrition, endocrine signals, 
and wound healing (Song et al., 2010). Hemocytes function 
as a rapid, and efficient response to stress (Weng et al., 2022; 
Lassudrie et al., 2020), and the effects of harmful algal toxins 
have been reported in bivalve hemocyte response (Tan et al., 
2023). 

Exposure to harmful algal toxins could induce an im-
munostimulant or an immunosuppressive effect, depending 
on the dinoflagellate toxicity and health status of the animal 
(Hégaret et al., 2011). In the present study, a significant 
decrease of hemocytes was recorded on the first 13-days 
of the exposure phase to P. lima. The decrease of hemocyte 
concentration is related to the toxins assimilated by C. gigas, 
because of the activation of the oyster immune system in res-
ponse to the toxins. In the same way, a decrease in hemocyte 
concentration was reported for the bivalve Perna perna after 
48 h exposure to 9 × 105 cell/mL of P. lima (Neves et al., 2019), 
and a 54% decrease in the mussel hemocyte count after P. 
perna and Dinophysis acuminate exposure (Simões et al., 
2015). Similarly, exposure of the bivalve Argopecten irradians 
to different concentrations of okadaic acid (50, 100 and 500 
nM) produced by the dinoflagellate Alexandrium tamarense 
induced a decrease in hemocyte concentration after 12 h 
(Chi et al., 2016). 

Granulocytes and hyalinocytes can be distinguished by 
the presence or absence of cytoplasm granules. Both cells 
contribute to the immune system response, through diffe-
rent mechanisms such as phagocytosis and encapsulation. 
Moreover, the main distinction between these two hemo-
cytes has been suggested to be the different life stages of the 
same cell type, however, they perform different functions (De 
la Ballina et al., 2022). In the present study, granulocyte and 
hyalinocyte were also affected by P. lima with a significant 
decrease in both cell types. Mello et al. (2010) reported a 12% 
decrease in bivalve granulocytes during the natural bloom 
of Dinophysis acuminata; the author also suggests a similar 
hyalinocyte and granulocyte production, but a granulocyte 
migration to the affected tissue (gills and intestines) could 
explain the decrease of this type of cell. 

Plasmatic parameters in the invertebrate hemolymph 
can be a useful indicator of the physiological status (López-
Elías et al., 2016). To our knowledge, this is the first report 
on C. gigas physiological status using commercial quick 
response kits. It is important to determine the normal rate 
of each parameter, as a rapid way of determining C. gigas 
physiological and health status (Medina Félix et al., 2017). 

The molluscan hemolymph plays an important role 
in metabolite and oxygen transport through the open cir-
culatory system. The main protein in mollusk hemolymph 
is hemocyanin; this respiratory pigment is a glycoprotein, 
responsible for oxygen transportation (Machałowski and 
Jesionowski, 2021). Additionally, some proteins in mollusk 
hemolymph have been related to the immune response, 
such as coagulation and melanization (Pascual et al., 2006). 
Hemolymph protein concentration in bivalves could be 
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Figure 4. Values of plasma triglycerides in Crassostrea gigas, during an exposure 
phase with the dinoflagellate Prorocentrum lima (13 days) and a depuration phase 
(15D depuration days). Letters indicates significant differences between exposure and 
depuration phases (p ˂ 0.05); the mean ± SD is indicated.
Figura 4. Valores de triglicéridos en plasma de Crassostrea gigas, durante una fase de 
exposición al dinoflagelado Prorocentrum lima (13 días) y una fase de depuración (15D 
días). Letras indican diferencias significativas entre las fases de exposición y depuración 
(p < 0.05); se indica la media ± desviación estándar).
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affected by a stress situation indicating a physiological res-
ponse (Simões et al., 2015). Protein concentration in C. gigas 
hemolymph was not significantly affected by the dinoflage-
llate P. lima exposure.

Glucose concentration in C. gigas hemolymph was 
affected by the dinoflagellate exposure, inducing an in-
crease in glucose concentration after 5 days of exposure, 
and a decrease at day 10 of the exposure phase. Glucose 
in the mollusk hemolymph is the main source of energy 
regulating glycogen metabolism and other ATP-dependent 
physiological mechanisms (Borges et al., 2004; Principe et al., 
2019). Glucose concentration in plasma is a powerful tool to 
estimate the health status of animals, nevertheless, it may be 
dependent on the diet, temperature, and immune system 
(Shadenko and Sidorov, 2020). During temperature stress, 
the concentration of cortisol and glucose increases in C. gigas 
hepatopancreas, indicating a physiological stress response, 
where the cortisol hormone played a significant role in glu-
cose metabolism (Wang et al., 2022). In the present research, 
glucose concentration was maintained from 0.7-1.0 mg/mL 

with a significant increase as a response to the dinoflagellate 
exposure phase. 

Lactate dehydrogenase is an indirect lactate measure-
ment, which is the final product of anaerobic metabolism. 
In mollusks, the lactate dehydrogenase enzyme has been 
detected in the foot and adductor muscle, and is responsible 
for the cytosolic redox balance during anaerobiosis cellular 
metabolism (Lee and Lee, 2011). Therefore, lactate is a con-
finable indicator of stress in mollusks (O’omolo et al., 2003). 
Lactate concentration increases on day 5 after the dinoflage-
llate P. lima exposure, and decreases on day 10; in mollusks 
during hypoxia conditions, large concentrations of lactate are 
produced, mainly by muscle; in those cases, lactate is elimi-
nated through gluconeogenesis, with a positive correlation 
between glucose and lactate (Medina Félix et al., 2019; Tripp-
Valdez et al., 2019). The present study observed an increase 
in glucose levels on day 10 after C. gigas exposition to P. lima; 
at the same time, a decrease in the lactate concentration 
indicated a negative correlation between these parameters. 

Lipids are important energy sources in invertebrate he-
molymph; they function as an important energy source and 
are essential for growth, survival, and reproduction. Lipids 
can be stored as energy in the digestive gland and mantle of 
mollusks (Medina Félix et al., 2019; Martínez-Pita et al., 2012). 
Additionally, aquatic mollusks have a lower lipid concentra-
tion in hemolymph than terrestrial species (Machałowski and 
Jesionowski, 2021). For instance, cholesterol and triglyceride 
contents in Achatina fulica hemolymph were 0.016 and 0.06 
mg/mL respectively (Lustrino et al., 2010), compared to an 
average of 0.24 mg/mL cholesterol and 0.33 mg/mL triglyce-
rides in C. gigas hemolymph. 

CONCLUSIONS
The present study evaluated C. gigas immune and physio-
logical responses after exposition to the dinoflagellate P. 
lima demonstrating a significant stress situation. These data 

represent valuable tools for rapid physiological evaluation 
of oysters, providing reference parameters for C. gigas. A 
negative correlation has been reported in the present study 
between glucose and lactate in C. gigas hemolymph, with a 
decrease of lactate on day 5 of the dinoflagellate exposure, 
and an increase on the same day of glucose concentration, 
indicating the gluconeogenesis pathway activation. Cras-
sostrea gigas exposure to the dinoflagellate P. lima induced 
accumulation in the digestive gland, and alterations in 
glucose, lactate, cholesterol, and triglyceride; at the same 
time, hemocyte composition was also affected by P. lima, 
with higher total hemocytes, granulocytes, and hyalinocytes 
in the control group. Moreover, C. gigas exhibited signs of 
recovery during the depuration phase. Therefore, the present 
study reaffirms the harmful effect that HAB-forming species 
possess, such as P. lima, on coastal benthic species as C gigas, 
and their possible recovery if exposure to toxic cells is for a 
short period.
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