73
Universidad de Sonora
ISSN: 1665-1456
73
Volume XXV, Issue 2
Journal of biological and health sciences
http://biotecnia.unison.mx
*Correspondence author: Gildardo Rivera
e-mail: gildardors@hotmail.com
Received: October 9, 2022
Accepted: February 2, 2023
Enterobacteriaceae in Pork Meat:
Causal Agents of Public Health Problems
Enterobacterias en Carne de Cerdo: Agentes Causales de Problemas de Salud Pública
Alma D. Paz-González,, Karina Vázquez, Ana V. Martínez-Vázquez, Carlos Ramírez- Martínez, Gildardo Rivera*
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Escobedo, ZC , México
Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa,
ZC , México.
SUMMARY
Pork meat is one of the most consumed products worldwide,
and pathogenic microorganisms in pork, such as Enterobac-
teriaceae, represent a public health risk, causing foodborne
diseases. Enterobacteriaceae in pork meat processing is an
indicator of poor sanitation management. Escherichia coli
(E. coli) and Salmonella spp. are the most prevalent bacteria.
Dierent studies report that their high percentage and the
multidrug resistance found are an alarming risk to consu-
mers´ health.
Keywords: Enterobacteriaceae, Pork, Public health.
RESUMEN
La carne de cerdo es uno de los productos más consumidos a
nivel mundial, y los microorganismos patógenos en la carne
de cerdo, como las Enterobacterias, representan un riesgo
para la salud pública, provocando enfermedades de transmi-
sión alimentaria. Las Enterobacterias en el procesamiento de
la carne de cerdo son un indicador de una gestión sanitaria
deciente. Escherichia coli (E. coli) y Salmonella spp. son las
bacterias más prevalentes. Diferentes estudios indican que
su porcentaje alto y la multifarmaco-resistencia son un riesgo
alarmante para la salud de los consumidores.
Palabras clave: Enterobacterias, Carne de cerdo, Salud pú-
blica.
INTRODUCTION
Meat is one of the main food sources for the human popula-
tion worldwide. It is an important source of protein, essential
amino acids, zinc, iron, phosphorus, and vitamin B, providing
benets to adults (cell repair and regeneration) and children
and adolescents (growth and development) (Bohrer, 2017).
The consumption of meat is in high demand globally. Howe-
ver, consumption varies depending on the region due to the
inuence of various factors such as gender, rural or urban
origin, educational level, and age of consumers (Estevez-
Moreno et al., 2021). Another important factor is income,
which in the case of the Mexican population, is a determining
aspect inuencing the selection of chicken, pork, or beef
meat (Huerta-Sanabria et al., 2018).
The production and consumption of chicken, pork,
beef, lamb, and mutton have grown, reaching record highs
in 2021, with an annual meat production and consumption
of 335,275 and 334,975, respectively. Mexico is among the
countries with the highest meat protein production and
consumption. Chicken meat is the most consumed (4,166
tons), followed by pork (2,217 tons) and beef (1,723 tons)
(OECD-FAO, 2022).
On the other hand, one of the world’s biggest problems
facing meat production and distribution is its susceptibi-
lity to bacterial contamination. This situation is related to
deciencies in hygiene and poor handling practices during
processing and distribution, which cause public health pro-
blems such as gastroenteritis and diarrhea, among others.
The Center for Disease Control and Prevention (CDC) reports
more than 250 foodborne diseases (FBD), mainly caused by
bacteria (CDC, 2021). Microbial spread in meat occurs during
the slaughtering process, mainly Enterobacteriaceae, a large
family of gram-negative bacteria, such as Salmonella, Esche-
richia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and
Yersinia, among others (Rönnqvist et al., 2018; Peruzy et al.,
2021). Bacteria, such as Staphylococcus aureus (S. aureus),
Pseudomonas, Brochothrix, Carnobacterium photobacterium
(C. photobacterium), Listeria, among others, have also been
frequently detected in meat processing (Peruzy et al., 2019).
Enterobacteriaceae cause FBD (Mladenović et al., 2021),
mainly gastrointestinal illnesses (Guzmán et al., 2017). In
recent years there has been infections with strains resistant
to one or more antibiotics, which has complicated treatment,
aggravating the disease, and even leading to the death of pa-
tients. For this reason, the World Health Organization (WHO)
considers bacterial or multidrug resistance as one of the ten
main health problems worldwide (WHO, 2019).
Dierent techniques have been established to detect
Enterobacteriaceae, such as traditional microbiological
methods involving bacterial colony counting and molecular
techniques, such as the polymerase chain reaction (PCR),
for rapid and more accurate detection (Cauchie et al., 2020).
Several studies have shown that Enterobacteriaceae are a
recurrent problem in the production and commercialization
of meat products, representing an important public health
risk. Therefore, this study analyzed the presence of Entero-
bacteriaceae in pork meat and its potential risk as a causal
agent of diseases.
DOI: 10.18633/biotecnia.v25i2.1846
74 Volume XXV, Issue 2
74
Paz-González et al: Biotecnia / XXV (2): 73-78 (2023)
We searched scientic articles in the PubMed, Science-
Direct, and Google Scholar databases for information and
data on food safety issues in pork meat, regarding their
production and consumption, bacterial pathogens presence,
the prevalence of Enterobacteriaceae, and their impact on
public health. The search was restricted to publications in
English and Spanish. The literature review was carried out
from March to July of 2022. The literature search was under-
taken using the keywords: Enterobacteriaceae, meat, pork,
antimicrobial resistance, and public health.
Prevalence of Enterobacteriaceae in pork meat
Several studies have demonstrated the presence of Entero-
bacteriaceae in pork meat samples (Table 1). In the United
States, E. coli was detected with a prevalence of 12 % and Sal-
monella spp. with almost 6 % (Mollenkopf et al., 2011); years
later, E. coli was reported with a value of 18 % (Scheinberg et
al., 2017). While, in the northeast from Mexico, in the state of
Tamaulipas, an investigation reported E. coli contamination
in pork meat with a high prevalence (50 %) (Martínez et al.,
2018).
Salmonella spp. had a prevalence of 32 % in Romania
(Mihaiu et al., 2014), and 56 % (Arcos-Ávila et al., 2013), and
71.4 % in Colombia (Rondón-Barragán et al., 2015). Salmone-
lla has been detected with a prevalence of 22 % in samples of
ground pork in the central region from Mexico (Villalpando-
Guzmán et al., 2016). A recent study in southern Brazil detec-
ted Salmonella enterica (S. enterica) in this same type of meat
with a prevalence of 17 % (Kich et al., 2020). In contrast to
these results, in Mexico city reported Salmonella spp. with a
prevalence of only 2 % (Gutiérrez et al., 2020).
Antimicrobial resistance in pork meat
Due to the high manufacture and administration of antibio-
tics in the production process of livestock animals (in 2010,
more than 63,000 tons were used, and by 2030, more than
105,000 tons is estimated), antimicrobial resistance has
rapidly increased and become a global public health threat
(Van Boeckel et al., 2015; Elshamy and Aboshanab, 2020).
The presence of antibiotic-resistant bacteria in pork
meat is a serious problem. Bacterial strains with resistance to
dierent groups of antibiotics are shown in Table 2. In Europe,
E. coli and Salmonella strains multiresistant to β-lactams were
detected in samples from a processing company in Germany,
that was supplied by slaughterhouses from Poland, Belgium,
and Spain. Therefore, the authors suggested that the cause
of such resistance is due to a very extensive processing and
distribution chain (Schill et al., 2017). In Latin America, E. coli
strains resistant to ve antibiotics (ampicillin, tetracycline,
nalidixic acid, chloramphenicol, and cotrimoxazole) were
isolated in pork samples from markets in Lima, Peru (Ruiz-
Roldán et al., 2018).
Impact on public health
According to WHO estimates, in 2015, FBD (caused by
bacteria, viruses, parasites, toxins, and chemicals) triggered
various outbreaks worldwide, sickening more than 600
million people annually and killing around 420,000. On the
American continent, more than 77 million people fall ill
annually, and around 9,000 die from consuming contamina-
ted food. Among the food pathogens that endanger health,
the Enterobacteriaceae responsible for diseases are mainly
Salmonella (salmonellosis) and E. coli, which cause gastroin-
testinal problems such as nausea, vomiting, abdominal pain,
and diarrhea. Other signs are fever and headache (WHO,
2018; Nastasijevic et al., 2020).
Enterobacteriaceae infections from pork meat con-
sumption represent a serious worldwide health problem
for consumers. In the United States, chicken and pork meat
consumption cause most salmonellosis infections (Bonardi,
Tabla 1. Prevalencia de Enterobacterias en carne de cerdo de diferentes países.
Table 1. Prevalence of Enterobacteriaceae in pork from dierent countries.
Bacteria Prevalence (%) Type of
sample Place of origin Country
E. coli
Salmonella spp.
12.2
5.8
Meat Retail markets
United States
(Mollenkopf et al., 2011)
Salmonella spp. 32.21 Meat Production and retail
markets
Romania
(Mihaiu et al., 2014)
Salmonella spp. 56.0 Meat Slaughter Colombia
(Arcos-Ávila et al., 2013)
Salmonella spp. 71.4 Meat Slaughter Colombia
(Rondón-Barragán et al., 2015)
Salmonella spp. 22.5 Ground beef Retail markets Mexico
(Villalpando-Guzmán et al., 2016)
E. coli 18 Meat Slaughter United States
(Scheinberg, 2017)
E. coli 50.8 Ground beef Retail markets Mexico
(Martínez et al., 2018)
Salmonella spp. 2.7 Tenderloin Retail markets Mexico
(Gutiérrez et al., 2020)
Salmonella enterica 17.2 Meat Slaughter Brazil
(Kich et al., 2020)
75
Volume XXV, Issue 2 75
Paz-González et al: Enterobacteriaceae in Pork Meat: Causal Agents of Public / XXV (2): 73-78 (2023)
Tabla 2. Resistencia antimicrobiana de Enterobacterias provenientes de carne de cerdo.
Table 2. Antimicrobial resistance of Enterobacteriaceae from pork.
Bacteria Resistant to Country
E. coli GEN,GEN, TGCTGC,, OFXOFX,, LEV.LEV. Slovakia
(Gajdošová et al., 2011)
E. coli AMC, AMP, PIP, CEC, COX, CXM, IMP,AMC, AMP, PIP, CEC, COX, CXM, IMP, APR, GEN, NEO, SPT, STR, APR, GEN, NEO, SPT, STR,
TOB, TOB, CMP,CMP, CIP, ENR, COL, DOX, CIP, ENR, COL, DOX, CXT.CXT.
Germania
(Schwaiger et al., 2012)
E. coli
Proteus vulgaris
Klebsiella pneumoniae
Enterobacter cloacae
AMP, PIPAMP, PIP,, CAZCAZ, , CXMCXM,, CTX.CTX. Spain
(Ojer-Usoz et al., 2013)
Salmonella spp. TET,TET, FFC, FFC, AMPAMP,, CMP, CMP, AMCAMC,, EFTEFT, , STX, TMP, STX, TMP, GENGEN, , CIP.CIP. Colombia
(Bermúdez & Rincón 2014)
Salmonella spp. SXT, SXT, STRSTR, , SPTSPT, , TETTET, , AMPAMP, TMP, TMP Thailand
(Sinwat et al., 2015)
E. coli AMP, AMC, CXT,AMP, AMC, CXT, CMP,CMP,
STR, KAN, GEN,STR, KAN, GEN, SXT, TMP, SXT, TMP, TET, TET, CIP.CIP.
Czech Republic
(Skočková et al., 2015)
E. coli CXTCXT Cuba
(Marrero-Moreno et al., 2017)
E. coli GENGEN, , CEP, CEP, CTXCTX,, CIP,CIP, AMPAMP,, CAZCAZ,, CMP.CMP.
Germany
(Schill et al., 2017)
Escherichia fergusonii AMPAMP
E. cloacae CTXCTX,, CAZCAZ,, AMP.AMP.
Proteus mirabalis CEP, CEP, CTXCTX, , TGC,TGC, AMPAMP, , CMP,CMP, COL.COL.
P. vulgaris CEP,CEP, TGC,TGC, AMPAMP,, CMP, CMP, COL.COL.
E. coli AMPAMP, , TETTET, , NALNAL, , CIP,CIP, CMP.CMP. Peru
(Ruiz-Roldán et al., 2018)
E. coli AMP, AMC, PIP, EPF, AMP, AMC, PIP, EPF, TET, TET, GEN, TOB.GEN, TOB. Thailand
(Lugsomya et al., 2018)
β-lactamicos: amoxicilina (AMC), ampicilina (AMP), piperacilina (PIP), cefaclor (CEC), cefoxitina (COX), cefuroxima (CXM), imipenem (IMP), cefotaxima (CXT),
ceftiofur (EFT), cefalosporina (CEP). Cloranfenicol: cloranfenicol (CMP) Aminoglicosidos: apramicina (APR), gentamicina (GEN), neomicina (NEO), especti-
nomicina (SPT), estreptomicina (STR), tobramicina (TOB), kanamicina (KAN), orfenicol (FFC). Fluoroquinolones: ciprooxacina (CIP), enrooxacina (ENR),
doxiciclina (DOX). Antimetabolitos: sulfametoxazol (SXT), trimetoprima (TMP). Tetracliclinas: tetracliclina (TET). Quinolonas: lovofoxacina (LEV), ooxacina
(OFX), ácido nalidíxico (NAL). Glicilciclina: tigeciclina (TGC). Ureidopenicilinas: ceftazidime (CAZ). Polimixina: colistina (COL).
β-lactams: amoxicillin (AMC), ampicillin (AMP), piperacillin (PIP), cefaclor (CEC), cefoxitin (COX), cefuroxime (CXM), imipenem (IMP), cefotaxime (CXT),
ceftiofur (EFT), cephalosporin (CEP). Chloramphenicol: chloramphenicol (CMP). Aminoglycosides: apramycin (APR), gentamicin (GEN), neomycin (NEO),
spectinomycin (SPT), streptomycin (STR), tobramycin (TOB), kanamycin (KAN), orfenicol (FFC). Fluoroquinolones: ciprooxacin (CIP), enrooxacin (ENR),
doxycycline (DOX). Antimetabolites: sulfamethoxazole (SXT), trimethoprim (TMP). Tetracycliclines: tetracyclicline (TET). Quinolones: lovofoxacin (LEV),
ooxacin (OFX), nalidixic acid (NAL). Glycylcycline: tigecycline (TGC). Ureidopenicillins: ceftazidime (CAZ). Polymyxin: colistin (COL).
2017). According to Tran et al. (2018), Salmonella enterica (S.
enterica) and some E. coli strains from pigs are major intesti-
nal pathogens. In Germany, public health authorities investi-
gated salmonellosis outbreaks in 2013 and 2014. Based on a
trace-back analysis, they detected Salmonella muenchen (S.
muenchen) in a pig breeding farm and considered it a pro-
bable source of contamination. The investigation suggested
that intoxications were caused by consuming raw pork and
pork products, traditional foods in some regions of Germany
(Schielke et al., 2017).
In The Netherlands, a study reported a strong asso-
ciation between salmonellosis and pork, considering that
consuming pork contaminated with Salmonella increases
the risk of intoxication in people treated with medications
such as antibiotics or antacids. Additionally, salmonellosis
contamination can also occur in workers from pig farms and
slaughterhouses (Berends et al., 1998).
An investigation by Hernandez et al. (2011) showed data
on salmonellosis cases (paratyphoid and other salmonella-
derived diseases) in Mexico from 2000-2008. In 2000, 10,000
cases were reported, although, in the same year, they began
to decrease; however, from 2002 to 2007, the cases increa-
sed to 12,000 and slightly decreased in 2008. In the case of
shigellosis, by the end of 1999, there were 40,000 cases, with
a signicant decrease in the 2000-2008 period, reaching
10,000 cases; however, this number was still considered high
according to those reported in the epidemiology bulletin of
the Mexican Republic.
Good handling practices
Good handling practices and sanitary surveillance are im-
portant during the dierent stages of the production and
distribution chain, to avoid pork meat contamination with
bacterial pathogens harmful to humans (Tang et al., 2017).
Meat can be contaminated from its origin due to animal
diseases, medication residues, or when the microbial ora of
the slaughtered animal comes into contact with the meat. It
can also be contaminated by surfaces, equipment, utensils,
water, and even the hands of workers (Nerin et al., 2016).
Slaughterhouses represent a strategic control point for
achieving meat product safety (COFEPRIS, 2017, in Spanish).
In the case of Mexico, the National Health, Safety and Food
76 Volume XXV, Issue 2
76
Paz-González et al: Biotecnia / XXV (2): 73-78 (2023)
Quality Service (SENASICA, in Spanish) and the Agriculture
and Rural Development Secretariat (SADER, in Spanish), have
as their objective the reduction in agricultural and livestock
risks, among others, and to keep the surveillance of food
contamination and agri-food quality of import and export
products under strict control.
Breeding and animal care stage: At the start of pig bree-
ding, feeding plays an important role in avoiding risks to
animal and human health. In Mexico, the Ocial Mexican
Standard, NOM-061-ZOO-1999, which states the Animal
health specications of food products for human consump-
tion, indicates which nished food products should be used
for animal consumption. In the care of animals intended for
human consumption, overexposure to antibiotics has poten-
tial adverse eects through direct toxicity to consumers and
the generation of microbial resistance (Chen et al., 2019). Due
to the presence of antimicrobial-resistant bacteria, the use of
antimicrobials for animal growth promotion was banned in
Europe and the United States, particularly those classied as
critically important for treating human infections (Iriti et al.,
2020). In Mexico, the specications for the use of antibiotics
in animals are described in the Ocial Mexican Standard
NOM-064-ZOO-2000, Guidelines for the classication and
prescription of veterinary pharmaceutical products by the
level of risk of their active ingredients. It establishes the te-
chnical and scientic criteria for the active ingredients used
in the formulation of veterinary pharmaceutical products to
avoid toxic eects on animals.
Slaughter and distribution stage: The pig slaughter pro-
cess is commonly carried out in Federal Inspection Type (TIF,
in Spanish) slaughterhouses, Health Secretariat Type (TSS, in
Spanish) municipal slaughterhouses, or private slaughter-
houses. TIF slaughterhouses are subject to stricter standards
of hygiene regulation and cold chain integrity and are mainly
used by large meat companies (OECD, 2018). However, the
three slaughter sites must comply with the sanitary regula-
tions for handling animal products stipulated in the NOM-
194-SSA1-2004 standard, which has as its main objective the
denition of the sanitary specications that establishments
must comply with if engaged in the slaughter and prepara-
tion of animals for supply, storage, transport, and sale of their
products. In addition, meat product transportation and dis-
tribution chains must comply with NOM-024-ZOO-1995. This
standard mentions the specications and zoosanitary charac-
teristics for the transportation of animals, their products, and
by-products, and chemical, pharmaceutical, biological, and
food products for use in animals or consumption by them. To
this end, the Federal Commission for the Protection against
Sanitary Risks (COFEPRIS, in Spanish) monitors the strategy
for evaluating sanitary risks and management actions in
slaughterhouses to reduce risks in meat products.
CONCLUSION
The increase in the worldwide production and consumption
of pork meat in recent years have acquired greater relevance
for the food industry because the industry must provide food
free of pathogenic microorganisms. Enterobacteriaceae are
important because they spread easily and contaminate pork
meat, causing gastrointestinal diseases. In this study, about
the prevalence of Enterobacteriaceae in pork meat shown
that Salmonella and Escherichia are frequently reported in
slaughterhouses and retail markets. Unfortunately, both ge-
nerous of strains are reported with antimicrobial resistance
to several groups of antibiotics, such as β-lactams, aminogl-
ycosides, uoroquinolones, and chloramphenicol. Therefore,
the responsible use of antibiotics in veterinary swine care
practices should adhere to the provisions of good manage-
ment practices manuals and current regulations aimed at
the proper use of antibiotics during the raising of animals for
human consumption.
REFERENCES
Arcos-Ávila, E. C., Mora-Cardona, L., Fandiño-de Rubio, L. C.,
and Rondón-Barragán, I. S. 2013. Prevalencia de Salmonella
spp. en carne porcina, plantas de benecio y expendios del
Tolima. Orinoquia. 17(1); 59-68.
Berends, B. R., Van Knapen, F., Mossel, D. A. A., Burt, S. A., and
Snijders, J. M. A. 1998. Impact on human health of Salmonella
spp. on pork in The Netherlands and the anticipated eects
of some currently proposed control strategies. International
Journal of Food Microbiology. 44(3): 219-229.
Bermúdez, P. M., and Rincón, S. M. 2014. Evaluación de la
susceptibilidad antimicrobiana de cepas de Salmonella spp.
aisladas del benecio porcino en Colombia. Revista Facultad
Nacional de Salud Pública. 32(1): 88-97.
Bohrer, B. M. 2017. Nutrient density and nutritional value of
meat products and non-meat foods high in protein. Trends
in Food Science & Technology. 65: 103-112.
Bonardi, S. 2017. Salmonella in the pork production chain
and its impact on human health in the European Union.
Epidemiology & Infection. 145(8): 1513-1526.
Cauchie, E., Delhalle, L., Taminiau, B., Tahiri, A., Korsak, N.,
Burteau, S., Fall, P. A., Farnir, F., Bare, G. and Daube, G. 2020.
Assessment of spoilage bacterial communities in food wrap
and modied atmospheres-packed minced pork meat
samples by 16S rDNA metagenetic analysis. Frontiers in
Microbiology. 10: 3074.
Centro para el control y tratamiento de enfermedades (CDC).
Microbios y enfermedades transmitidos por los alimentos.
[Accessed July-10-2022] 2021. Available in: https://www.
cdc.gov/foodsafety/es/foodborne-germs-es.html
Chen, J., Zhao, L., Mao, Y., Ye, M., Guo, Q., Zhang, Y., Liyun, X.,
Zhang, Z., and Chu, H. 2019. Clinical ecacy and adverse
eects of antibiotics used to treat Mycobacterium abscessus
pulmonary disease. Frontiers in Microbiology. 10: 1977.
Comisión Federal para la Protección contra Riesgos Sanitarios
(COFEPRIS). Riesgos en Alimentos de Origen Animal:
Evaluación de Riesgos en Rastros y Mataderos Municipales.
[Accessed May-19-2022] 2017. Available in: https://www.
gob.mx/cofepris/acciones-y-programas/riesgos-en-
alimentos-de origen-animal-evaluacion-de-riesgos-en-
rastros-y-mataderos-municipales
Diario Ocial de la Federación. Norma ocial mexicana NOM-
092-SSA1-1994, Especicaciones zoosanitarias de los
77
Volume XXV, Issue 2 77
Paz-González et al: Enterobacteriaceae in Pork Meat: Causal Agents of Public / XXV (2): 73-78 (2023)
productos alimenticios para consumo animal [Accessed
June-20-2022]. 1994. Available in: https://www.gob.mx/
cms/uploads/attachment/file/203496/NOM-061-ZOO
1999_11102000.pdf
Diario Ocial de la Federación. Norma Ocial Mexicana
NOM-024-ZOO-1995, Especicaciones y características
zoosanitarias para el transporte de animales, sus productos
y subproductos, productos químicos, farmacéuticos,
biológicos y alimenticios para uso en animales o consumo
por éstos. [Accessed July-01- 2022]. 1995. Available
in: https://www.gob.mx/cms/uploads/attachment/
le/563482/NOM-024-ZOO-1995_161095.pdf
Diario Ocial de la Federación. Norma Ocial Mexicana
NOM-064-ZOO-2000. Lineamientos para la clasicación y
prescripción de productos farmacéuticos veterinarios por
el nivel de riesgo de sus ingredientes activos. [Accessed
June-25- 2022]. 2000. Available in: https://www.gob.
mx/cms/uploads/attachment/file/203504/NOM-064-
ZOO-2000_270103.pdf.
Diario Ocial de la Federación. Norma Ocial Mexicana NOM-
194-SSA1-2004, Productos y servicios. Especicaciones
sanitarias en los establecimientos dedicados al sacricio
y faenado de animales para abasto, almacenamiento,
transporte y expendio. Especicaciones sanitarias de
productos. [Accessed June- 30-2022]. 2004. Available in:
https://www.dof.gob.mx/nota_detalle.php?codigo=661587
&fecha=18/09/2004# gsc.tab=0
Elshamy, A. A., and Aboshanab, K. M. 2020. A review on bacterial
resistance to carbapenems: epidemiology, detection, and
treatment options. Future science OA. 6(3): FSO438.
Estévez-Moreno, L. X., María, G. A., Sepúlveda, W. S., Villarroel,
M., and Miranda-de la Lama, G. C. 2021. Attitudes of meat
consumers in Mexico and Spain about farm animal welfare:
A cross-cultural study. Meat Science. 173: 108377.
Food and Agriculture Organization (FAO). 2021. Meat market
review: Emergency trends an outlook. 1-15.
Gajdošová, Ľ., Kačániová, M., Bobček, B., Lejková, J., Hleba, L., and
Čuboň, J. 2011. Antibiotic resistance of enterobacteriaceae
species isolated from pork meat. Animal Physiology. 57-62.
Gutiérrez, R., Alquicira, E. P., Varela, D. B., and Chabela, M. D. L. P.
2020. Prevalencia de microorganismos patógenos en carne
de cerdo al menudeo en supermercados de la Ciudad de
México. Nacameh. 14(1): 31-40.
Guzmán, C. A., Rodríguez-Rodríguez, V. C., and Calderón-Rangel,
A. 2017. Contaminantes microbiológicos en un mercado del
sur de Montería: Un riesgo para la salud pública. Ciencia y
Agricultura. 14(2): 89-97.
Hernandez, C. C., Aguilera, A. M. G., and Castro, E. G., C. E. 2011.
Situación de las enfermedades gastrointestinales en México.
Enfermedades Infecciosas y Microbiología. 31(4): 137.
Huerta-Sanabria, S., Arana-Coronado, Ó. A., Sagarnaga-Villegas,
L. M., Matus-Gardea, J. A., and Brambila-Paz, J. D. J. 2018.
Impacto del ingreso y carencias sociales sobre el consumo
de carne en México. Revista Mexicana de Ciencias Agrícolas.
9(6): 1245-1258.
Iriti, M., Vitalini, S., and Varoni, E. M. 2020. Humans, animals,
food and environment: One health approach against global
antimicrobial resistance. Antibiotics. 9(6): 346.
Kich, J. D., Souza, A. I., Montes, J., Meneguzzi, M., Costa, E.
F., Coldebella, A., Corbellini, L. G. and Cardoso, M. 2020.
Investigation of Listeria monocytogenes, Salmonella enterica
and Yersinia enterocolitica in pig carcasses in Southern Brazil.
Pesquisa Veterinária Brasileira. 40: 781-790.
Lugsomya, K., Yindee, J., Niyomtham, W., Tribuddharat, C.,
Tummaruk, P., Hampson, D. J., and Prapasarakul, N. 2018.
Antimicrobial resistance in commensal Escherichia coli
isolated from pigs and pork derived from farms either
routinely using or not using in-feed antimicrobials. Microbial
Drug Resistance. 24(7): 1054-1066.
Marrero-Moreno, C. M., Mora-Llanes, M., Hernández-Fillor, R.
E., Báez-Arias, M., García-Morey, T., and Espinosa-Castaño,
I. 2017. Identicación de Enterobacteriaceae productoras
de betalactamasas de espectro extendido (BLEEs) en
instalaciones porcinas de la provincia Matanzas. Revista de
Salud Animal. 39(3): 00-00.
Martínez-Vázquez, A. V., Rivera-Sánchez, G., Lira-Méndez,
K., Reyes-López, M. Á., and Bocanegra-García, V. 2018.
Prevalence, antimicrobial resistance, and virulence genes
of Escherichia coli isolated from retail meat in Tamaulipas,
Mexico. Journal of Global Antimicrobial Resistance. 14: 266-
272.
Mihaiu, L., Lapusan, A., Tanasuica, R., Sobolu, R., Mihaiu, R., Oniga,
O., and Mihaiu, M. 2014. First study of Salmonella in meat in
Romania. The Journal of Infection in Developing Countries.
8(01): 050-058.
Mladenović, K. G., Grujović, M. Ž., Kiš, M., Furmeg, S., Tkalec,
V. J., Stefanović, O. D., and Kocić-Tanackov, S. D. 2021.
Enterobacteriaceae in food safety with an emphasis on raw
milk and meat. Applied Microbiology and Biotechnology,
105(23), 8615-8627.
Mollenkopf, D. F., Kleinhenz, K. E., Funk, J. A., Gebreyes, W. A.,
and Wittum, T. E. 2011. Salmonella enterica and Escherichia
coli harboring bla CMY in retail beef and pork products.
Foodborne Pathogens and Disease. 8(2): 333-336.
Nastasijevic, I., Schmidt, J. W., Boskovic, M., Glisic, M.,
Kalchayanand, N., Shackelford, S. D., Wheeler, T. L.,
Koohmaraie, M., and Bosilevac, J. M. 2020. Seasonal
prevalence of Shiga toxin-producing Escherichia coli on
pork carcasses for three steps of the harvest process at two
commercial processing plants in the United States. Applied
and Environmental Microbiology. 87(1): e01711-20.
Nerin, C., Aznar, M., and Carrizo, D. 2016. Food contamination
during food process. Trends in Food Science & Technology.
48: 63-68.
Ojer-Usoz, E., González, D., Vitas, A. I., Leiva, J., García-Jalón, I.,
Febles-Casquero, A., and de la Soledad Escolano, M. 2013.
Prevalence of extended-spectrum β-lactamase-producing
Enterobacteriaceae in meat products sold in Navarra, Spain.
Meat Science. 93(2): 316-321.
Organizacion para la cooperacion y el Desarrollo Económicos.
Estudios de evaluación de competencia de la OCDE: Mexico.
Editions OCDE, Paris. [Accessed March-02-2022]. 2018.
Available in: https://doi.org/10.1787/9789264287921-es
Organization for Economic Co-operation and Development-
Food and Agriculture Organization (OECD-FAO) Agricultural
Outlook 2017-2026: MEATS - OECD-FAO Agricultural Outlook
2017-2026. [Accessed March-12-2022]. 2022. Available in:
https://stats.oecd.org/index.aspx?queryid=76854.
Organización de las Naciones Unidas para la Alimentación y la
Agricultura (FAO). 2017. Presentación y evaluación de los
datos sobre residuos de plaguicidas para la estimación de
los límites máximos de residuos de plaguicidas en alimentos
y piensos. Tercera edición. 225: 1-321.
78 Volume XXV, Issue 2
78
Paz-González et al: Biotecnia / XXV (2): 73-78 (2023)
Peruzy, M. F., Murru, N., Yu, Z., Cnockaert, M., Joossens, M.,
Proroga, Y. T. R., and Houf, K. 2019. Determination of the
microbiological contamination in minced pork by culture
dependent and 16S amplicon sequencing analysis.
International Journal of Food Microbiology. 290: 27-35.
Peruzy, M. F., Houf, K., Joossens, M., Yu, Z., Proroga, Y. T. R., and
Murru, N. 2021. Evaluation of microbial contamination of
dierent pork carcass areas through culture-dependent
and independent methods in small-scale slaughterhouses.
International Journal of Food Microbiology. 336: 108902.
Rondón-Barragán, I. S., Arcos, E. C., Mora-Cardona, L., and
Fandiño, C. 2015 Characterization of Salmonella species
from pork meat in Tolima, Colombia. Revista Colombiana de
Ciencias Pecuarias. 28(1): 74-82.
Rönnqvist, M., Välttilä, V., Ranta, J., and Tuominen, P. 2018.
Salmonella risk to consumers via pork is related to the
Salmonella prevalence in pig feed. Food in Microbiology. 71:
93-97.
Ruiz-Roldán, L., Martínez-Puchol, S., Gomes, C., Palma, N., Riveros,
M., Ocampo, K., Durand, D., Ochoa, T. J., Ruiz, J. and Pons,
M. J. 2018. Presencia de Enterobacteriaceae y Escherichia
coli multirresistente a antimicrobianos en carne adquirida
en mercados tradicionales en Lima. Revista Peruana de
Medicina Experimental y Salud Pública. 35: 425-432.
Scheinberg, J. A., Dudley, E. G., Campbell, J., Roberts, B.,
DiMarzio, M., DebRoy, C., and Cutter, C. N. 2017. Prevalence
and phylogenetic characterization of Escherichia coli
and hygiene indicator bacteria isolated from leafy green
produce, beef, and pork obtained from farmers markets in
Pennsylvania. Journal of Food Protection. 80(2): 237-244.
Schielke, A., Rabsch, W., Prager, R., Simon, S., Fruth, A., Helling,
R., Schnabel, M., Siczyk, C., Wieczorek, S., Schroeder, S.,
Ahrens, B., Oppermann, H., Pfeier, S., Merbecks, S, S.,
Rosner, B., Frank, C., Weiser, A, A., Luber, P., Gilsdorf, A., Stark,
K. and Werber, D. 2017. Two consecutive large outbreaks of
Salmonella Muenchen linked to pig farming in Germany,
2013 to 2014: Is something missing in our regulatory
framework? Eurosurveillance. 22(18): 30528.
Schill, F., Abdulmawjood, A., Klein, G., and Reich, F. 2017.
Prevalence and characterization of extended-spectrum
β-lactamase (ESBL) and AmpC β-lactamase producing
Enterobacteriaceae in fresh pork meat at processing level
in Germany. International Journal of Food in Microbiology.
257: 58-66.
Schwaiger, K., Huther, S., Hölzel, C., Kämpf, P., and Bauer, J.
2012. Prevalence of antibiotic-resistant enterobacteriaceae
isolated from chicken and pork meat purchased at
the slaughterhouse and at retail in Bavaria, Germany.
International Journal of Food Microbiology. 154(3): 206-211.
Sinwat, N., Angkittitrakul, S., and Chuanchuen, R. 2015.
Characterization of antimicrobial resistance in Salmonella
enterica isolated from pork, chicken meat, and humans in
Northeastern Thailand. Foodborne Pathogens and Disease.
12(9): 759-765.
Skočková, A., Koláčková, I., Bogdanovičová, K., and Karpíšková,
R. 2015. Characteristic and antimicrobial resistance in
Escherichia coli from retail meats purchased in the Czech
Republic. Food Control. 47: 401-406.
Tang, K. L., Carey, N. P., Nóbrega, D. B., Cork, S. C., Ronksley, P.
E., Barkema, H. W., Polachek, A. J., Ganshorn, H., Sharma, N.,
Kellner, J. D., and Ghali, W. A. 2017. Restricting the use of
antibiotics in food-producing animals and its associations
with antibiotic resistance in food-producing animals and
human beings: a systematic review and meta-analysis. The
Lancet Planetary Health. 1(8): e316-e327.
Tran, T. H. T., Everaert, N., and Bindelle, J. 2018. Review on the
eects of potential prebiotics on controlling intestinal
enteropathogens Salmonella and Escherichia coli in pig
production. Journal of Animal Physiology and Animal
Nutrition. 102(1): 17-32.
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A.,
Robinson, T. P., Teillant, A., and Laxminarayan, R. 2015. Global
trends in antimicrobial use in food animals.Proceedings of
the National Academy of Sciences. 112(18): 5649-5654.
Villalpando-Guzmán, S., Vázquez-Quiñones, C. R., Natividad-
Bonifacio, I., Quiñones-Ramírez, E. I., and Vázquez-Salinas,
C. 2016. Prevalence of Salmonella in Chicken, Beef and Pork
Meat in Mexico City. Academia Journal of Microbiology
Research 4(10): 125-130.
World Health Organization (WHO). Informe de la OMS señala que
los niños menores de 5 años representan casi un tercio de
las muertes por enfermedades de transmisión alimentaria.
[Accessed April-18-2022] 2015. Available in: https://www.
who.int/es/news/item/03-12-2015-who-s-rst-ever-global-
estimates-of-foodborne-diseases-find-children-under-5-
account-for-almost-one-third-of-deaths
World Health Organization (WHO). E. coli. [Accessed April-15-
2022] 2018. Available in: https://www.who.int/news-room/
fact-sheets/detail/e-coli
World Health Organization-Pan American Health Organization
(WHO-OPS). [Accessed March-15-2022] 2019. Available in:
https://www3.paho.org/hq/index.php?option=com_conte
nt&view=article&id=14916:ten-threats-to-global-health-in-
2019&Itemid=135&lang=es