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ABSTRACT
Cnidoscolus chayamansa leaves – used in gastronomy and 
traditional medicine in Mexico – are rich in phenolic com-
pounds, which may have antioxidant and antimicrobial acti-
vity. In this study we evaluated the in vitro antioxidant activity 
and in silico antibacterial activity, of ethanolic extracts of C. 
chayamansa leaves obtained by ultrasonication. Phenolic 
content was 14.37 mg GAE/mL. Guanosine nucleoside and 
coumaric acid, and kaempferol derivatives were identified 
through UPLC-PDA-ESI-MS. Evidence of antioxidant activity 
was demonstrated by the Cu2+ chelation activity (65.53 %) 
and the Fe3+ reducing antioxidant power (69.59 %). Although 
no antibacterial activity was found against E. coli and S. au-
reus, the in silico analysis revealed that the isolated phenolic 
compounds modify signaling pathways essential for the 
survival of the bacteria studied.
Keywords: chaya leaves; phenolic compounds; molecular 
docking; antioxidant activity; antibacterial activity.

RESUMEN
Las hojas de Cnidoscolus chayamansa – utilizadas en la 
gastronomía y la medicina tradicional en México – son 
ricas en compuestos fenólicos que pueden tener actividad 
antioxidante y antimicrobiana. En este estudio evaluamos la 
actividad antioxidante in vitro y la actividad antibacteriana 
in silico de extractos etanólicos de hojas de C. chayamansa 
obtenidos por ultrasonicación. El contenido de compuestos 
fenólicos fue de 14.37 mg GAE mL-1. Se lograron identificar 
compuestos como nucleósido de guanosina, ácido cumárico 
y los derivados de kaempferol mediante UPLC-PDA-ESI-MS. 
Los extractos tuvieron actividad antioxidante por medio de 
la quelación del Cu2+ (65.53 %) y el poder reductor del Fe3+ 
(69.59 %). Aunque no se encontró actividad antibacteriana 

contra E. coli y S. aureus, por medio de la inhibición de creci-
miento en disco, el análisis in silico reveló que los compuestos 
fenólicos aislados modifican las vías de señalización esencia-
les para la supervivencia de las bacterias estudiadas.
Palabras clave: hojas de chaya; compuestos fenólicos; doc-
king molecular; actividad antioxidante; actividad antibacte-
riana. 

INTRODUCTION
Cnidoscolus chayamansa, commonly known as chaya is an 
endemic shrub of Tabasco and the Yucatan Peninsula in Mexi-
co (Pérez-González et al., 2019) used in local gastronomy, in 
addition to traditional medicine (Rodrigues et al., 2021) pre-
sumably due to a high content of bioactive compounds (phe-
nols, flavonoids, coumarins, and cyanogenic glycosides) in its 
leaves (Gutiérrez-Rebolledo et al., 2016; Bautista-Robles et al., 
2020). The antioxidant activity of bioactive compounds plays 
a fundamental role through multiple pathways, preventing 
oxidative stress (OS)-related diseases (Pisoschi et al., 2021) 
such as diabetes mellitus and cardiovascular diseases (sca-
venging free radicals, increasing the activity of endogenous 
antioxidant enzymes, improvement of insulin resistance and 
enhancement of glucose uptake and metabolism) (Huang 
et al., 2020; Garcia and Blesso, 2021), as well as cancer, they 
induce apoptosis, by lowering the nucleoside diphosphate 
kinase-B activity (involved in nucleic acid replication), inhibi-
ting cell-proliferation and cell cycle arrest by suppressing the 
NF-kB pathway in various cancers (Hazafa et al., 2020). 

OS occurs when reactive oxygen species (ROS) and free 
radicals (FR) increase, which may cause cellular and tissue 
damage (Ouadi et al., 2017). Bioactive compounds such as 
polyphenols may act as antioxidants, anti-inflammatory, and 
antimicrobial agents through modulation of inhibitory re-
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ceptors of inflammation and activators of anti-inflammatory 
enzymes (Kaabi, 2022).

A positive correlation exists between the content of 
phenolic compounds and the antibacterial capacity, inclu-
ding bacteriostatic and bactericidal properties. Phenolic 
compounds modify the bacterial cytoplasmic membrane 
permeability and inhibit signaling pathways involved in bac-
terial survival (Vazquez-Armenta et al., 2022). Research shows 
that ethanolic extracts of C. chayamansa leaves showed high 
antibacterial activity against S. aureus, B. Cereus, E. coli, K. 
pneumoniae and S. pyogenes (Elizabeth et al., 2023). Moreover, 
the extraction method can affect the concentration of phe-
nolic compounds; for instance, modern extraction methods 
based on sonication – generated through the coupling 
of high-power and low-frequency ultrasound waves that 
travel through the liquid medium, causing cycles of low and 
high-pressure and creating acoustic cavitation bubbles that 
collapse releasing a large number of compounds present in 
the sample (Chemat et al., 2017; Fu et al., 2020). The current 
study aimed to evaluate the in vitro and in silico antioxidant 
and antibacterial potential of the Ultrasonic Assisted Ethano-
lic Extracts (UAEE) of C. chayamansa leaves.

MATERIALS AND METHODS
Collection and preparation of samples. Leaves of C. cha-
yamansa were collected on February 2022, from the edge 
of the Teapa River (17°33’49.3”N 92°57’09.7”W), Joyas del 
Pedregal, in the municipality of Teapa, Tabasco, Mexico, and 
studied in the herbarium from El Colegio de la Frontera Sur 
(code HET 2459, HET 2460, and HET 2461). Leaves were was-
hed with drinking water, dried in a dehydrator (Model 32 100, 
Hamilton Beach) at a constant temperature of 41 ºC for 18 
hours, and grounded until pulverized. 

Ultrasonic Assisted Ethanolic Extracts (UAEE)
The ethanolic extraction comprised 10 g of dry leaves of C. 
chayamansa in 100 mL of aqueous ethanol (1:1) using a 40 
kHz ultrasonic mechanical bath (1800, Branson, St. Louis, MO, 
USA) at 25 °C for 30 min. The extracts were filtered through 
Whatman #1 paper (150 mm diameter) and stored at 4 °C 
(Pérez-González et al., 2019).

Quantification and profile of phenolic compounds from 
Ultrasonic Assisted Ethanolic Extracts (UAEE)
The Folin-Ciocalteu method (Ruiz et al., 2015) was used to 
estimate the concentration of phenolic compounds from C. 
chayamansa, with gallic acid as the standard (≥ 98.0, CAS: 
5995-86-8, Fermont, Monterrey, Mexico). The analyses were 
carried out in triplicate, and results are expressed as mg of 
Gallic Acid Equivalents (mg GAE/mL). 

The profile of phenolic compounds from Ultrasonic 
Assisted Ethanolic Extracts (UAEE) of C. chayamansa was de-
termined through ultra-performance liquid chromatography 
coupled with a photodiode array detector and electrospray 
ionization mass spectrometry (UPLC-PDA-ESI-MS); using an 

ultra-performance liquid chromatograph (UPLC) (ACQUITY 
UPLC H-Class, Waters Corporation, Milford, MA, USA) equip-
ped with a quaternary pump (UPQSM), and an automatic 
injector (UPPDALTC). Chromatographic separation was per-
formed on a Waters’ ACQUITY UPLC BEH C18 column, 1.7 μm, 
100 x 2.1 mm I.D (Milford, MA, USA) under similar conditions 
reported by Herrera-Pool et al. (2021). The Photodiode Array 
Detector (PDA) was set to scan within a wavelength (λ) range 
from 190 nm to 600 nm. The absorbance response was taken 
from channels A (290 nm) and B (350 nm). Mass spectra (Xevo 
TQ-S Micro, Waters, Chicago, IL, USA) were recorded in full 
scan negative ion mode at 50 - 2000 m/z. Compounds were 
identified by comparing the observed spectral fingerprint 
data with those reported in Pubchem and MassBank data-
bases.

Determination of antioxidant activities in vitro 
Chelating capacity of Cu2+ and Fe2+ in vitro 

Chelating activity of Cu2+ was determined with the 
method reported by Saiga et al. (2003), mixing 250 µL of 
sodium acetate buffer (50 mM, pH 6.0) with 250 µL of 20 mM 
Cu2+ standard solution and 25 µL of 0.1 % violet pyrocatechol, 
reacted for 5 min at 25 ºC and then 250 µL of the blank (dis-
tilled water) or UAEE samples were added. The absorbances 
were measured at 632 nm in a spectrophotometer (VE-
5100UV, Velab, Pharr, TX, USA). All samples were performed 
in triplicate. The copper chelating activity was calculated as:

% CC Cu2+ = (Sampler Abs - Blank Abs)/(Sampler Abs)×100	� (Eq 1)

Where % CC Cu2+ represents the percentage of copper 
chelated. 

The Fe2+ chelating capacity was determined by the 
method used by Ruiz et al. (2015). Briefly, the absorbance of 
a blank and the UAEE samples were read, mixing 250 μL of 
sodium acetate buffer (100 mM, pH 4.9) with 250 μL of 20 
mM Fe2+ standard solution, and 250 μL of water (in the case 
of the blank) or 250 µL of UAEE. Next, it was left to react for 5 
min at room temperature and then 50 µL of 40 mM ferroxine 
solution were added. Absorbances were measured at 562 nm 
in a spectrophotometer (VE-5100UV, Velab, Pharr, TX, USA). 
All samples were processed in triplicate. The Fe2+ chelating 
activity is estimated as shown in Eq. 2:

% CC Fe2+ = (Sampler Abs-Blank Abs)/(Blank Abs)×100	� (Eq 2)

Where % CC Fe2+ represents the percentage chelating 
capacity.

Fe3+ reducing power
The Fe3+ reducing power was determined using the method 
described by Sudha et al. (2011). Briefly, absorbance mea-
surements from a blank (distilled water) and UAEE were 
made. 250 µL of blank or sample were taken and 250 µL of 
phosphate buffer (0.2M, pH 6.6) and 250 µL of 1 % K3[Fe(CN)6] 
were added in each case, shaken for 5 sec in a vortex and 
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incubated at 50 ºC for 20 min. Once the incubation was com-
pleted, 250 µL of 10 % C2HCl3O2 was added, 500 µL of this 
mixture was taken and deposited in a 2 mL Eppendorf tube, 
and then 400 µL of distilled water and 100 µL of 0.1% FeCl3 
were added, mixed for 5 seconds in a vortex and incubated at 
50 ºC for 10 minutes. Finally, the samples were centrifuged at 
3000 rpm for 10 min in a centrifuge with a 10 cm rotor diame-
ter (J-40, Solbat. Edo. Mex., Mexico), and the absorbances of 
the supernatant were read at 700 nm in a spectrophotometer 
(VE-5100UV, Velab, Pharr, TX, USA). All samples were analy-
zed in triplicate. The Fe3+ reducing power was estimated as 
shown in Eq 3:

% PR Fe2+ = (Sampler Abs-Blank Abs)/(Sampler Abs)×100	�  (Eq. 3)

Where % PR Fe2+ represents the percentage reducing 
power of Fe3+.

ABTS radical scavenging capacity
ABTS radical scavenging capacity was determined by the 
method reported by Ruiz et al. (2015) with some modifica-
tions. First, a 2.0 mM ABTS solution was prepared, then the 
ABTS+ radical cation was produced with a 70 mM K2S2O₈ 
solution, allowing the mixture to remain in the dark at 25 ºC 
for 16 hours before use. Subsequently, this solution was dilu-
ted with phosphate buffer (1.0 M, pH 7.4) until obtaining an 
absorbance of 0.800 ± 0.030 at 734 nm. Next, 10 µL of UAEE 
diluted 1:10 were taken and reacted with 990 µL of the ABTS+ 
radical diluted in phosphate buffer. Next, the absorbance at 
734 nm was measured in a spectrophotometer (VE-5100UV, 
Velab, Pharr, TX, USA) after 1 and 6 min of reaction. The same 
procedure was performed with a blank sample using 50% 
ethanol. All samples were analyzed in triplicate. The ABTS+ 
radical scavenging percentage (% RS) of the samples were 
calculated as shown in Eq. 4:

% RS = (Sampler Abs-Blank Abs)/(Sampler Abs)×100	�  (Eq. 4)

Where % RS represents the percentage ABTS radical 
scavenging.

DPPH radical scavenging capacity
The DPPH radical scavenging capacity was done ac-

cording to the method proposed by Fukumoto and Mazza 
(2000), with some modifications. Briefly, a 0.1 mM DPPH solu-
tion in ethanol was prepared. UAEE samples diluted 1:10 and 
distilled water (as a blank) were analyzed. The procedure was 
the same for both. 100 µL of blank and 100 µL of extracts were 
taken individually and 1000 µL of the DPPH solution were 
added to each one, then shaked in a vortex for 10 seconds 
and allowed to react for 30 minutes in the dark. Next, their 
absorbances were read at 517 nm in a spectrophotometer 
(VE-5100UV, Velab, Pharr, TX, USA). All samples were analy-
zed in triplicate. The % uptake of RL DPPH was determined 
as shown in Eq. 5:
% RSC  = (Sampler Abs-Blank Abs)/(Sampler Abs)×100	�  (Eq. 5)

Where % RSC represents the percentage DPPH radical 
scavenging capacity.

Fe3+ reducing power
The reducing power of Fe3+ was determined using the 
method described by Sudha et al. (2011). Briefly, absorbance 
measurements from a blank (distilled water) and UAEE of 
C. chayamansa were made. 250 µL of blank or sample were 
taken, mixed with 250 µL of phosphate buffer (0.2M, pH 6.6) 
and 250 µL of 1% K3[Fe(CN)6] in each case, shaken for 5 se-
conds in a vortex and incubated at 50 ºC for 20 minutes. Once 
the incubation was completed, 250 µL of 10 % C2HCl3O2 were 
added, then 500 µL of this mixture were taken and deposited 
in a 2 mL Eppendorf tube, 400 µL of distilled water and 100 
µL of 0.1% FeCl3 were added, mixed for 5 seconds in a vortex 
and incubated at 50 ºC for 10 min. Finally, the samples were 
centrifuged at 3000 rpm for 10 min in a centrifuge with a 10 
cm rotor diameter (J-40, Solbat. Edo. Mex., Mexico, and the 
absorbances of the supernatant measured read at 700 nm in 
a spectrophotometer (VE-5100UV, Velab, Pharr, TX, USA). All 
samples were analyzed in triplicate. The reducing power of 
Fe3+ was estimated as shown in Eq. 3:

% PR Fe2+ = (Sampler Abs-Blank Abs)/(Sampler Abs)×100	�  (Eq. 3)

Where % PR Fe2+ represents the percentage reducing 
power of Fe3+.

Antibacterial activity
The antibacterial activity of the UAEE of C. chayamansa was 
evaluated against Escherichia coli (G- ATCC 25922) and Sta-
phylococcus aureus (G+ ATCC 25923). The agar disc diffusion 
method was performed on Muller-Hilton agar (MCD LAB, 
Cat 7131, Mex), prepared according to the manufacturer’s 
specifications and sterilized in an autoclave at 1.055 Kgf/
cm2 for 15 min. After that, 30 mL of agar were distributed in 
Petri dishes which were impregnated with 100 μL per box 
with the adjusted suspension of each indicator bacteria. Six-
mm diameter sterile discs were impregnated with 30 μL of 
UAEE. As a positive control antibiogram discs were used with 
amoxicillin and clavulanic acid (AMC) at a concentration of 
30 μg/mL. As negative controls, disks impregnated with 30 
μL of sterilized water were used. All samples were analyzed 
in triplicate for each type of extract and were incubated at 
37 °C for 24 h. Growth inhibition halos were measured with a 
Vernier Calliper (Calliper, Lenfech, 0 mm - 150 mm measuring 
range). The antibacterial activity was assessed according to 
Capitani et al. (2016) parameters.

In silico antibacterial activity
For in silico antibacterial activity, the crystal structure of key 
receptors for E. coli (2WUB, 4XO8) and S. aureus (2W9S, 2ZCO) 
were retrieved from the Protein Data Bank (http://www.rcsb.
org/

http://www.rcsb.org/
http://www.rcsb.org/
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). The structures were prepared using the Dock Prep 
Module of UCSF Chimera 1.14 (Pettersen et al., 2004) by 
removing water molecules, sidechains and ligands, adding 
hydrogens, and assigning partial charges. However, the Mg 
ion was kept due to its importance for the 4WUB protein 
function. Protein fragments were reconstructed by applying 
SWISS-MODEL (Waterhouse et al., 2018). 

Ligands – Guanosine, Kaempferol-3-O-rutinoside, 
Kaempferol-3-(2G-glucosylrutinoside)-7-rhamninoside, Ka-
empferol-3-O-rhamninoside, Kaempferol-3-(2G-glucosylruti-
noside) and Rutin – and control compounds (trimethoprim, 
farnesyl thiopyrofosfate, heptyl-α-D-mannopyrannoside, 
and phosphoaminophosphoric acid adenilate ester) were 
retrieved in Mole2 file format (.mol2) from PubChem (https://
pubchem.ncbi.nlm.nih.gov/). Avogadro 1.2.0 (Hanwell et 
al., 2012) optimized f ligands’ molecular geometry and con-
verted the input files to .pdb files, later prepared using the 
Chimera docking tool.

All structures were aligned on a grid box large enough 
to accommodate all the experimental ligands used for mo-
lecular docking analysis. The grid size and the grid box coor-
dinates for each target were as follows: 2WUB, 25×25×25 Å 
(14.57, 19.81, -10.80); 4OX8, 30×30×30 Å (-43.84, 5.15, 3.86); 
2W9S, 25×25×25 Å (2.67, -2.13, 44.93); and 2ZCO, 30×30×30 Å 
(53.86, 10.35, 51.81). Ten independent docking runs were 
executed for each structure with the Autodock Vina tool 

(Eberhardt et al., 2021). Additionally, ten replicates were per-
formed for each combination of ligand and receptor, which 
were analyzed through LigPlot+ (Laskowski et al., 2011) and 
PyMOL (De Lano et al., 2002). 

Docking results were validated by extracting the co-
crystallised ligands of the 2W9S, 2ZCO, 4XO8, and 4WUB 
proteins and re-docking them into the same position. The 
ligands pose with the lowest energy obtained on re-docking, 
and the co-crystallised ligands were superimposed to calcu-
late the RMSD values in PyMOL software. The RMSD values 
must be within a reliable range of 2 Å to validate the docking 
process (Jug et al., 2015). Table 1 summarizes the binding 
affinity between the C. chayamansa compounds, bacterial 
proteins, and ligand-amino acid interactions.

Statistical analysis
Results were summarized by descriptive statistics using R 
Studio (V 4.2.1) and reported as mean ± standard error of the 
mean. 

RESULTS AND DISCUSSION
Phenolic compounds in ethanolic extracts of C. chaya-
mansa
The concentration of phenolic compounds in the UAEE of C. 
chayamansa leaves was 143.7 mg of gallic acid equivalents 

Table 1. Binding affinities between C. chayamansa compounds and bacterial proteins and ligand-amino acid interactions.
Tabla 1. Afinidades de unión entre compuestos de C. chayamansa y proteínas bacterianas e interacciones ligando-aminoácido.

Target Ligand
Binding
affinities

(Kcal/mol)
Amino acid interactions

2W9S

Guanosine
Kaempferol-3-O-rutinoside
Kaempferol-3-(2G-glucosylrutinoside)-7-rhamninoside
Kaempferol-3-O-rhamninoside
Kaempferol-3-(2G-glucosylrutinoside)
Rutin
Trimethoprim

-8.0
-9.5
-7.7
-9.3
-7.7
-9.2
-7.6

I14, G15, N18, Q19, K45, T46, I50, G94, Y98, T121
I5, A7, L20, W22, H23, D27, L28, T46, I50, F92, Y98
A7, L20, H23, I31, L32, T46, I50, L52, R57, F92, Y98

A7, Q19, L20, L28, I31, T46, I50, F92, Y98
I5, A7, Q19, L20, T46, I50, L52, F92, Y98

A7, L20, W22, H23, D27, T46, S49, I50, F92, G94, Y98
A7, I14, G46, N18, L20, D27, I31, T46, S49, F92, Y98, T121

2ZCO

Guanosine
Kaempferol-3-O-rutinoside
Kaempferol-3-(2G-glucosylrutinoside)-7-rhamninoside
Kaempferol-3-O-rhamninoside
Kaempferol-3-(2G-glucosylrutinoside)
Rutin
Farnesyl thiopyrophosphate

-7.4
-10.1
-10.4
-9.3
-8.9
-9.8
-7.2

N17, H18, R45, D48, Q165, N168, D172, Y183, R265
H18, R45, D48, Y129, Q165, V133, I169, D172, Y183

D49, D52, V111, D114, Q165, N168, N179, R181, D172, D176, 
R265

H18, Y41, R45, D49, D114, Y129, D172, R181, Y183
R45, D48, D49, V111, D114, Q165, D172, D176, R181, Y183

D48, V111, D114, Y129, V133, Q165, N168, D176, R181, Y183
H18, F22, Y41, R45, A134, A157, L160, Q165, N168, R171, D172

4XO8

Guanosine
Kaempferol-3-O-rutinoside
Kaempferol-3-(2G-glucosylrutinoside)-7-rhamninoside
Kaempferol-3-O-rhamninoside
Kaempferol-3-(2G-glucosylrutinoside)
Rutin
Heptyl-α-D-mannopyranoside

-6.6
-6.9
-5.9
-6.9
-6.1
-6.8
-6.5

F1, D46, D47, Y48, I52, D54, Q133, N135, D140, F142
D37, L76, S78, G79, V93, V94, Y95, L101, P102, P104, V105

A2, C3, L4, G8, A10, P12, F43, H45, D47, R98, D100
F1, P12, H45, N46, D47, Y48, D54, R98, Q133, N135, D140, F142

A2, C3, A10, I13, P12, F43, H45, D47, R98, T99, D100
D37, L76, S79, G79, V93, V94, Y95, L101, P102, P104
F1, I13, N46, D47, Y48, I52, D54, Q133, N135, D140,

4WUB

Guanosine
Kaempferol-3-O-rutinoside
Kaempferol-3-(2G-glucosylrutinoside)-7-rhamninoside
Kaempferol-3-O-rhamninoside
Kaempferol-3-(2G-glucosylrutinoside)
Rutin
Phosphoaminophosphoric acid adenylate ester 

-8.3
-9.2
-8.7
-8.9
-8.5

-10.1
-11.1 

N46, E50, D73, G77, I78, P79, I94, L103, Y109, V120, T165
N46, A90, V93, I94, G101, G102, L103, D105, N107, S108, Y109
E50, I78, H83, V93, G101, G102, L103, D105, N107, Y109, R136

N46, E50, R76, P79, H83, I94, G101, G102, D105, N107, S108, Y108
P79, H83, A90, G101, G102, L103, D105, N107, S108, Y109, R136

E50, D73, P79, H83, I94, G101, G102, L103, S108, Y109, G117
N46, D73, V97, A100, G102, L103, L115, H116, G117, V118, G119, 

V120, S121, Q335, L337

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
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(mg GAE)/g dry leaves. Guanosine nucleoside and different 
coumaric acid and kaempferol derivatives were identified 
(Table 2). Other compounds reported in extracts of C. chaya-
mansa leaves are rutin, naringenin, chlorogenic acid, ferulic 
acid, protocatechuic acid, astragalin, caffeic acid, myristic 
acid, riboflavin, and β-carotene (Guzmán et al., 2020). Kaem-
pferol has an antioxidant activity via free radical elimination 
(Hussain et al., 2021), coumaric acid (a hydroxycinnamic acid, 
i.e. a hydroxy metabolite cinnamic acid) has a high antibac-
terial, antioxidant, and anti-inflammatory potential related to 
the prevention of cardiovascular diseases (Liu et al., 2020). 

In a study where the effect of the aqueous extract of 
chaya leaves (Cnidoscolus aconitifolius) in precarcinogenic 
lesions was evaluated, a minor concentration of total pheno-
lic compounds (52.5 mg galic acid equivalents/g of dry leaf ) 
was reported, which differs from our results. The presence 
of p-coumaric acid is reported, which together with rosma-
rinic acid, chlorogenic acid, resveratrol and luteoin are the 
major compounds in extracts obtained; other compounds 
identified were gallic acid, caffeic acid, vanilic acid, vanillin, 
resveratrol, apigenin y ferulic acid (Kuri-García et al., 2019). 

Us-Medina et al. (2020) evaluated the in vitro antioxidant and 
anti-inflammatory activity of biologically active compounds 
from C. aconitifolius extracts, reporting a greater amount of 
phenolic compounds in aqueous extracts (706.1 mg galic 
acid equivalents/g of dry leaf ) than those reported here; for 
ethanolic extracts, 351.3 mg galic acid equivalents/g of dry 
leaf were also reported in C. aconitifolius aqueous extracts. 
The concentration of phenolic compounds may vary accor-
ding to the solvent used. Polar solvents are employed for 
plant extractions since they contain bonds between atoms 
that differ in electronegativity (e.g., O-H) and form hydrogen 
bonds; therefore, they are suitable for dissolving polar reac-
tants such as ions (Li et al., 2018). Ethanol has a lower polarity 
than methanol, however, ethanol is Generally Recognized as 
Safe (GRAS) by the Food and Drug Administration (FDA). 

In vitro antioxidant activity
The antioxidant potential of natural extracts is associated 
with the content of phenolic compounds. The main anti-
oxidant potential of the UAEE of C. chayamansa leaves was 
obtained in the Cu2+ chelation activity assays (65. 53 ± 1.72) 

Table 2. Phenolic compounds detected in Ultrasonic Assisted Ethanolic Extracts (UAEE). The identified compounds that showed a higher signal intensity are 
shown in bold.
Tabla 2. Compuestos fenólicos detectados en Extractos Etanólicos Asistidos por Ultrasonido (UAEE). Los compuestos identificados que mostraron una mayor 
intensidad de señal se muestran en negrita.

Peak # RT (PDA 
detector) λ max

Molecular ion
 ([M – H]-)

m/z

Fragments
m/z Tentative identification

1 6.93 253, 280sh 282 150 Guanosine

2 8.26 198, 266, 317 901 755, 593, 447, 355, 
283 Kaempferol 3-(2G-glucosylrutinoside)-7-rhamnoside

3 8.39 221, 280sh, 311 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer I)

4 8.45 197, 290sh, 312 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer II)

5 8.64 221, 295sh, 311 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer III)

6 8.69 210, 290sh, 316 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer IV)

7 8.86 196, 300 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer V)

8 8.95 197, 290sh, 312 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer VI)

9 9.11 195, 262sh, 310 355 209, 191, 147, 85 Coumaroyl aldaric acid (Isomer VII)

10 9.25 197, 254, 
268sh, 343 755 300, 284 Kaempferol 3-(2G-glucosylrutinoside)

11 9.57 210, 265, 346 739 284, 254, 227 Kaempferol 3-O-rhamninoside

12 9.72 203, 255, 
268sh, 352 609 300, 271 Rutin

13 10.17 210, 265, 343 593 284, 254, 227 Kaempferol-3-O-rutinoside (Isomer I)

14 10.29 210, 265, 348 593 284, 254, 227 Kaempferol-3-O-rutinoside (Isomer II)

15 10.56 195, 266, 307 593 284, 254, 227 Kaempferol-3-O-rutinoside (Isomer III)

16 10.90 197, 265, 344 593 284, 254, 227 Kaempferol-3-O-rutinoside (Isomer IV)

17 11.22 210, 265, 321 447 284, 254, 227 Kaempferol-3-O-hexoside (Isomer I)

18 11.66 197, 265, 346 447 284, 254, 227 Kaempferol-3-O-hexoside (Isomer II)

RT: Retention time
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and Fe3+ reducing power (69.59 %). Regarding the ABTS and 
DPPH free radical trapping capacity, the antioxidant poten-
tial was less than 50 % (37.74 ±3.43 and 14.24± 0.22% res-
pectively), and the Fe 2+ chelation activity was 15.71 ± 0.82%. 
However, the antioxidant activity by the DPPH method was 
higher than that reported by García-Rodríguez et al. (2013), 
which was 10.66% in ethanolic extract of C. chayamansa, 
and 254.04 µmol Fe2+/L for assay of ferric reducing power; 
this extract contained 35.7 mgEAG/g of leaf; the authors 
reported the presence of, coumarins, flavonoids, lignans and 
cyangenic glycosides. Among their findings, the authors re-
ported that the ethanolic extracts of C. chayamansa also had 
anti-inflammatory activity in the in vivo model, although it 
was low, which was related to the concentration of phenolic 
compounds.

Antioxidant activity has also been reported in other 
species of the genus Cnidoscolus, although by other methods 
such as TEAC and ORAC, with values of 539 and 926 µmol Tro-
lox equivalents/g of lyophilized extract respectively, in etha-
nolic extracts of C. aconitifolius leaf. These extracts had phe-
nolic compounds (52.5 mg GAE/g) and flavonoids (41.6 mg 
catechin equivalent/g); the administration of these extracts 
in experimental animals protected against colon cancer in a 
model in which an oxidizing agent (azoxymethane) and an 
inflammatory agent (dextran sodium sulfate), through inhi-
biting cell proliferation and inflammation of colonic lesions 
by decreasing β-catenin and at long-term COX-2 reduction, 
although a high expression of NF-jB (Kuri-García et al., 2019).

In vitro and in silico antibacterial activity
For in vitro antibacterial activity assay, the inhibition halos in 
positive controls showed high activity against Gram-negative 
and Gram-positive bacteria strains (Table 3). Conversely, the 
halos of inhibition size in UAEE of C. chayamansa leaves was 
less than 10 mm, hence, considered inactive (Capitani et al., 
2016). This could have been mainly due to the solvent or ex-
tract concentration used, other authors reported that etha-
nol extract of C. chayamansa leaves contained flavonoids, 
saponins, cardenolides and polyphenols with antibacterial 
activity against S. aureus, with an inhibition zone of 13.2 mm, 
greater than that found in this study (9.96 mm). Also, for the 
test in E. coli the activity was greater (14.83 mm) than that 

reported by us (7.9 mm). On the other hand, they demonstra-
ted that C. chayamansa extracts obtained with different sol-
vents had activity agains Gram-positive pathogenic bacteria 
(B. Cereus and S. pyogenes) and Gram negative pathogenic 
bacteria (E. coli and K. pneumoniae), using ciprofloxacin as a 
control (Elizabeth et al., 2023).

For in silico assays, target proteins can be proposed 
for future tests, either in vitro or in vivo, in this sense, target 
proteins involved in the viability of S. aureus were selected 
for antibacterial potential evaluation of the extracted com-
pounds against these microorganisms (Figure 1). Firstly, 
Dihydrofolate Reductase (DHFR, 2W9S) (https://www.rcsb.
org/structure/2w9s) involved in the folic acid pathway in S. 
aureus, which promotes thymidylate biosynthesis essential 
for cell replication and proliferation (He et al., 2020; Bourne et 
al., 2010). Secondly, Dehydrosqualene Synthase (CrtM, 2ZCO) 
(https://www.rcsb.org/structure/2ZCO) responsible for 
synthesizing the golden carotenoid pigment staphyloxanthin 
of S. aureus, which provides its antioxidant properties, aiding 
bacteria survival within the host cell (Kahlon et al., 2010; Wu 
et al., 2019). Inhibitors targeting DHFR and CrtM potentially 
induce bacterial death and serve as effective targets for trea-
ting bacterial infections.

Molecular docking was conducted to determine the tar-
get protein–compound binding energy. All six characterized 
compounds were docked against 2W9S and 2ZCO proteins 
using Autodock Vina. Almost all the evaluated ligands showed 
higher affinities than the co-crystallized ligands found in 
the crystal structures of each target during re-docking. The 
most favorable ligand-target complexes were Kaempferol-
3-O-rutinoside-2W9S (-9.5 kcal/mol) and Kaempferol-3-(2G-
glucosylrutinoside)-7-rhamninoside-2ZCO (-10.4 kcal/mol). 

Two targets from E. coli were selected to evaluate the 
inhibitory potential of the compounds identified through 
the UAEE of C. chayamansa leaves. The first target is the FimH 
protein (4XO8), a bacterial adhesion lectin located at the tip 
of E. coli type 1 fimbriae or pili. These structures facilitate 
bacterial binding to surfaces that display mannose residues 
(Hartmann et al., 2011; Magala et al., 2020). The second target 
is the DNA gyrase B subunit (4WUB), which plays a crucial role 
in regulating the physiological function of the genome and 
providing the energy required for DNA supercoiling (Sissi 
et al., 2010). This enzyme is an ideal target for antibacterial 
drugs due to its potential for selective toxicity (Sissi et al., 
2010; Fois et al., 2020).

Molecular docking evaluated the binding energy bet-
ween the 4XO8 and 4WUB proteins, and the six compounds 
through Autodock Vina. The evaluated ligands showed simi-
lar affinities to the co-crystallized ligands, particularly with 
4XO8. However, for 4WUB, the evaluated ligands exhibited 
slightly lower activity compared to the co-crystallized ligand, 
Phosphoaminophosphoric acid adenylate ester. The most 
favorable ligand-target complexes were Kaempferol-3-O-
rutinoside-4XO8 (-6.9 kcal/mol) and Rutin-4WUB (-10.1 kcal/
mol). 

Table 3. Antibacterial activity of Ultrasonic Assisted Ethanolic Extracts 
(UAEE) from C. chayamansa leaves.
Tabla 3. Actividad antibacteriana de extractos etanólicos obtenidos por ul-
trasonicación (UAEE) de hojas de C. chayamansa.

Escherichia coli Staphylococcus aureus

UAEE 7.90* 9.96*

AMC 20.05**** 42.93****

C- 7.28* 6.46*

UAEE: Ultrasonic Assisted Ethanolic Extract, AMC: amoxicillin with clavu-
lanic acid C+; positive control)y C-: negative control *inactive, ** partially 
active, ***active **** very active (Capitani et al., 2016).
 UAEE: Extracción Etanólica Asistida por Ultrasonido; AMC: Amoxicilina con 
ácido clavulánico; C+ Control positivo; C- Control negativo; *inactivo, ** 
parcialmente activo, ***activo y **** muy activo (Capitani et al., 2016).
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Due of the results obtained, it´s possible that the com-
pounds from the C. chayamansa extract could exert a bacte-
riostatic effect on E. coli cultures during the in vitro antibac-
terial activity evaluation via inhibition of 4WUB, explaining 
the observed inhibition halos, such as Tang et al. (2022) and 
Biasi-Garbin et al. (2022) obtained with similar methodolo-
gies. On the other hand, 4XO8 inhibition was unclear in the 
in vitro evaluation; however, it suggests that the evaluated 
compounds can bind to these lectins, thereby obstructing 
bacterial adhesion to host tissues.

CONCLUSIONS
The compounds present in UAEE from C. chayamansa leaves, 
are guanosine nucleoside and different coumaric acid and 
kaempferol derivatives. These compounds could be related 
to Cu2+ chelation activity and Fe3+ reducing antioxidant 
power. Although the antibacterial activity is not conclusive 
in the inhibition halos assays, the molecular docking results 

suggest that the identified compounds could intervene in 
metabolic processes necessary for the survival and replica-
tion of E. coli and S. aureus. Therefore, subsequent studies are 
necessary to evaluate the effect of different concentrations of 
C. chayamansa leaves extracts and their isolated compounds 
on bacterial strains.
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Figure 1. Two and three-dimensional representation of the hydrogen bonding and hydrophobic interaction between ligands within 
the binding cavity of receptors. a) Kaempferol-3-O-rutinoside-2W9S complex, b) Kaempferol-3-(2G-glucosylrutinoside)-7-rhamni-
noside-2ZCO complex, c) Kaempferol-3-O-rutinoside-4OX8 complex and d) Rutin-4WUB complex.
Figura 1. Representación bidimensional y tridimensional de los enlaces de hidrógeno y la interacción hidrofóbica entre ligandos 
dentro de la cavidad de unión de los receptores. a) Complejo Kaempferol-3-O-rutinósido-2W9S, b) Complejo Kaempfe-rol-3-(2G-
glucosilrutinósido)-7-ramninósido-2ZCO, c) Complejo Kaempfe-rol-3-O-rutinósido-4OX8 y d) Rutin-4WUB complejo.
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