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ABSTRACT
Yam beam (Pachyrhizus erosus L.) root, commonly known as 
jicama, is widely consumed by health-conscious individuals 
due to its low caloric content, However, its nutritional value 
is relatively low. To enhance these nutritional properties, 
jicama can be supplemented with probiotics and antioxidant 
compounds. In this study, the jicama pieces were coated with 
an edible layer containing microencapsulated Lactobacillus 
acidophilus, Bifidobacterium spp. and phenolic compounds 
derived from green coffee, which were microencapsulated 
using a double spray drying technique. The probiotics and 
phenolic compounds were dried using double spray drying 
with chitosan at 120 and 140 °C. The results showed that the 
inlet air temperature did not have a statistically significant 
effect (p ≥ 0.05) on the encapsulation efficiency of probiotics, 
chlorogenic acid and caffeine content, or antioxidant activity 
expressed as IC50 value (110 - 116 µg/mL). After 6 d of storage 
at 4 °C, the jicama supplemented with the microcapsules 
containing Lactobacillus acidophilus and Bifidobacterium spp. 
exhibited a reduction in microbial viability by 1 and 2 log 
CFU/g, respectively. However, the addition of microcapsules 
allowed a higher concentration of phenolic compounds than 
the control group. Minimally processed jicama containing 
microcapsules with probiotics and phenolic compounds 
could be a functional food, and the reported procedure 
could be applied for industrial purposes.
Keywords: edible coating; antioxidant compounds; spray-
dried.

RESUMEN
La raíz de ñame (Pachyrhizus erosus L.) comúnmente llamada 
jícama, es consumida por personas preocupadas por su salud 
ya que tiene bajo contenido calórico y, a pesar de que contie-
ne algunas vitaminas, su contenido nutrimental es bajo. Para 
mejorar estas propiedades nutricionales, la jícama puede ser 
suplementada con probióticos y compuestos antioxidantes. 
En este estudio, la jícama fresca en trozos fue recubierta 
con microcápsulas que contenían Lactobacillus acidophilus, 
Bifidobacterium spp. y compuestos fenólicos de café verde, 
los cuales fueron microencapsulados mediante secado por 
aspersión doble. Los probióticos y compuestos fenólicos se 
secaron mediante doble secado por aspersión con quitosano 
a 120 y 140 °C. Los resultados indicaron que la temperatura 

de entrada del aire no afectó estadísticamente (p ≥ 0.05) 
la eficiencia de encapsulación de los microorganismos, el 
contenido de ácido clorogénico y cafeína, ni la actividad anti-
oxidante expresada como IC50 (110 - 116 µg/mL). Después de 
6 d de almacenamiento a 4 °C, en la jícama adicionada con 
las microcápsulas, la viabilidad de Lactobacillus acidophilus 
y Bifidobacterium spp. tuvieron una reducción de 1 y 2 log 
UFC/g, respectivamente. Sin embargo, la concentración 
de compuestos fenólicos fue superior que en la jícama del 
grupo control. La jícama que contiene las microcápsulas con 
probióticos y compuestos fenólicos podría ser un alimento 
funcional, y el procedimiento desarrollado podría aplicarse 
con fines industriales.
Palabras clave: recubrimiento comestible; compuestos anti-
oxidantes; secado por aspersión

INTRODUCTION
In 2022, around 7100 Ha in México were planted with 
Pachyrhizus erosus L. (jicama) with an average production of 
24 tons/Ha (SIAP, 2022). Jicama is a legume; the edible struc-
tural organ of this plant is the root, which is consumed fresh. 
The root is low in calories (40 cal) and contains vitamins, 
minerals and starch (Ramírez-Balboa et al., 2023). Although 
jicama contains most essential amino acids, vitamins and 
minerals (Duke, 1992), these nutritional values are relatively 
low. Therefore, jicama is a product that can be supplemented 
with other bioactive compounds. In this sense, antioxidant 
compounds and probiotics have been used to fortify other 
products (Granato et al., 2020). 

Phenolic compounds exhibit significant biological activ-
ities, including antimicrobial, anti-inflammatory (Albuquer-
que et al., 2021), and antitumoral (Heleno et al., 2015), among 
others. Granato et al. (2020) reported that an increased 
intake of natural phenolic compound antioxidants is associ-
ated with a reduced risk of coronary disease. While phenolic 
compounds are present in many fresh foods, they can also 
be incorporated into foods during processing. In that sense, 
coffee is widely recognized as a functional food with antiox-
idant properties, primarily due to its phenolic compounds, 
as noted by Jeszka-Skowron et al. (2016). Although coffee is 
mostly consumed processed, green coffee has been reported 
to be a rich source of phenolic compounds, such as chloro-
genic acids, hydroxycinnamic acids, caffeine, and caffeic acid 
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(Macheiner et al., 2019), among others. However, these com-
pounds are easily oxidized during processing and storage, 
which reduces their effectiveness. Due to the importance of 
these compounds for human health, researchers are interest-
ed in developing systems that protect bioactive compounds 
during co-administration (Bednarska and Janiszewska-Turak, 
2020).

In the context of improving people’s health, researchers 
are looking for new strains of probiotics, as these have been 
shown to provide health benefits to the host, as demonstrat-
ed by Ramírez-Pérez et al. (2023) in in vivo studies using Wistar 
rats. Probiotics are live microorganisms that, when adminis-
tered in adequate amounts, promote a benefit in the health 
of the host (Ramírez-Pérez et al., 2022). Probiotics can help 
treat gastrointestinal diseases (Fragnant et al., 2023), reduce 
serum cholesterol and heart disease (Oniszczuk et al., 2021), 
regulate glycemic indexes (Rezazadeh et al., 2019), control 
urogenital tract infections (Nader-Macías and Juárez, 2015) 
and stimulate the immune system (Salami et al., 2019). Two 
common probiotic microorganisms are the bacteria from the 
genera Bifidobacterium and Lactobacillus (Ramos-Clamont et 
al., 2013; Yao et al., 2019). To provide these benefits, probi-
otic bacteria must be present with a minimum of 106 to 107 

colony-forming units (CFU) per g or mL of food (FAO/WHO, 
2006). However, factors such as stress produced during their 
management, storage and transit through gastrointestinal 
tract can decrease their viability (López-Fernández et al., 
2019; Pupa et al., 2021). 

To avoid the loss of probiotic viability and to protect phe-
nolic compounds against adverse environmental conditions 
such as light, moisture, and oxygen, microencapsulation pro-
cesses are often employed. Several microencapsulation pro-
cesses have been developed for this purpose, which involve 
trapping the bioactive compound within a coating material 
(Reque and Brandelli, 2021). Spray drying is the most widely 
used technique for protecting probiotics (Russo et al., 2022) 
and phenolic compounds. Because it is difficult for a single 
encapsulant matrix to have all the required characteristics, 
it is common to use carbohydrates, proteins and polysac-
charides at different ratios (Navarro-Flores et al., 2020) or 
multilayers of these (Abrahão et al., 2019; Pupa et al., 2021). 
Chitosan is one of the most promising coating materials used 
for microencapsulation to improve the stability of phenolic 
compounds and probiotics (Pupa et al., 2021). Microcapsules 
obtained by spray drying with chitosan are very stable in 
storage and demonstrate controlled release characteristics 
because of their low solubility at neutral pH (Flores-Belmont 
et al., 2015). 

Although the separate microencapsulation of phenolic 
compounds and probiotic has been reported in several 
studies, few have evaluated the effect of double microen-
capsulation by spray drying on cell viability, phenolic com-
pounds content and the properties of the microcapsules. 
Additionally, only a limited number of papers have explored 
the used of these microcapsules in the development of 
functional foods. Given that jicama has limited attractive 
nutritional characteristics but is consumed for its low caloric 

content, this research aimed to determine the effect of inlet 
air temperature on the properties of microcapsules obtained 
by single and double spray drying. Moreover, the effect of 
the addition of probiotics and phenolic compounds from 
green coffee microencapsulated in coating form on the 
microbiological, physicochemical, and sensory properties of 
minimally processed jicama roots was tested.

MATERIAL AND METHODS
Microorganisms and conditions of cultivation
Lactobacillus acidophilus and Bifidobacterium spp. (Vivolac, 
Mexico) were reactivated in Man Rogosa Sharpe (MRS) broth 
supplemented with 0.05 % (w/v) cysteine, and incubated at 
38 °C for 20 h. Subsequently, cells were centrifuged at 4500 
rpm for 15 min, at 4 °C. The pellet containing the cells was 
washed twice with 0.9 % (w/v) saline solution and centri-
fuged using the same conditions (Odila et al., 2016).

Preparation of green coffee extract
The green coffee beans were ground and then passed in 
a sieve 40 (0.420 mm) to produce green coffee powder. To 
obtain the green coffee extract, the methodology of Budryn 
et al. (2013) was employed with some modifications. Briefly, 
the green coffee powder was mixed with distilled water at a 
1:5 (w/v) ratio and heated at 90 °C for 1 h. Subsequently, the 
solution was filtered using filter paper (0.16 mm pore size). 
Finally, the green coffee extract (GCE) was stored in amber 
jars at 4 °C until use.

Encapsulation of probiotics and phenolic compounds
The double microencapsulation of microorganisms and 
coffee extract was performed following the methodology 
proposed by Flores-Belmont et al. (2015), with some modifi-
cations. In the first step, an aqueous of gelatin-maltodextrin 
(1:25) solution, at 26 % (w/w), was prepared in an ascorbic 
acid solution at 1 % (w/v). The GCE was added to a final 
concentration of 4.2 mg gallic acid equivalent/mL. Lacto-
bacillus acidophilus and Bifidobacterium spp. were added to 
a final concentration of 109 and 108 CFU/mL, respectively. 
Subsequently, the mixture was homogenized using an Ultra 
Turrax T-25 Basic Homogenizer at 4500 rpm for 5 min. The 
mixture was fed into a spray dryer (BUCHI Mini B-290, Flawil, 
Switzerland) at a constant flow of 14 mL/min, and two inlet 
air temperatures, 120 °C and 140 °C, were evaluated, with an 
outlet air temperature of 50 °C. The microcapsules obtained 
in the first spray-dried process were hydrated and dried by 
spray drying in a second step. For this, 10 g of the microcap-
sules were added to 100 mL of a 0.5 % (w/v) chitosan solution 
prepared in 1 % (v/v) acetic acid, and the mixture was sub-
jected to the drying process following the same conditions 
as the first step. Finally, the microcapsules were stored in 
vacuum-sealed metal bags until use.

Efficiency of probiotic microencapsulation
The microencapsulation efficiency of probiotic microorgan-
isms (MEP) was evaluated using one gram of the suspension 
before drying or one gram of the microcapsules which were 
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mixed with 9 mL of sterile peptone water (0.1 %, w/v). Viable 
cell counts were determined in triplicate by plate seeding us-
ing MRS agar supplemented with L-cysteine (0.05 % w/v) and 
incubated at 37 °C (72 h). Previous results showed that the 
morphology of colonies was different for Lactobacillus aci-
dophilus and Bifidobacterium spp. The results were expressed 
as a log CFU/g sample as suggested by Pupa et al. (2021). The 
MEP was calculated by equation1: 

 (1)
 

where No and N represented the log of the number of via-
ble cells (CFU) before and after the encapsulation process, 
respectively.

Powder properties
After simple and double spray drying, microcapsules were 
characterized in terms of water solubility index (WSI), water 
absorption rate (WAR), swelling capacity (SC), morphology, 
microencapsulation efficiency of phenolic compounds (MYp) 
and antioxidant activity (AA).

Water solubility index (WSI), water absorption rate (WAR) 
and swelling capacity (SC)
The WSI was determined according to Paini et al. (2015). One 
gram of the microcapsules was mixed with 12 mL of distilled 
water, mixed and incubated at 30 °C for 30 min. The sample 
was then centrifuged at 3500 rpm for 10 min. The superna-
tant was transferred to a capsule and dried at 105 °C until 
it reached a constant weight. The WSI, WAR, and SC were 
calculated using equations 2, 3, and 4, respectively:

 (2)

 (3)

 (4)
 

Microcapsule morphology
The morphology of the microcapsules was examined by 
scanning electron microscopy (SEM) using a high-resolution, 
high-vacuum microscope (SM-71480 JEOL, Massachusetts, 
USA). The microcapsules were attached to the sample holder 
with double-sided adhesive tape. SEM images were taken 
at room temperature and examined using an acceleration 
voltage of 15 kV according Navarro-Flores et al. (2020).

Microencapsulation efficiency of phenolic compounds 
(MYp)
The microencapsulation efficiency of phenolic compounds 
(MYp) was calculated by using the total and superficial 
phenolic compounds in microcapsules, following the 
methodology described by Navarro-Flores et al. (2020). 
Briefly, to measure the total phenol content, 200 mg of the 
microcapsules were mixed with 2 mL of methanol:acetic 

acid:water solution (50:8:42 v/v/v). The mixture was shaken 
for 1 min, sonicated twice in a Cole-Palmer ultrasonic bath 
model 08855-00 (Cole-Palmer, Vernon Hills, IL, USA) at 25 °C 
for 20 min, and finally centrifuged at 4000 rpm for 5 min. The 
supernatant was used for quantifying the total phenolic con-
tent. For determination of superficial phenolic compounds 
content, 200 mg of the microcapsules were mixed with 2 mL 
of ethanol:methanol solution (1:1), agitated for 1 min, and 
then centrifuged at 4,000 rpm for 5 min, and the content of 
phenolic compounds was determined according to Navar-
ro-Flores et al. (2020). The content of the total and superficial 
phenolic compounds was determined with Folin-Ciocalteu 
reagent, with the method described by Singleton et al. (1999) 
using gallic acid as the standard. The results were expressed 
as milligrams of gallic acid equivalents (GAE) per gram of 
powder. The efficiency of the microencapsulation of phenolic 
compounds was determined by Eq. 5:

 (5)

where PCtotal is the total phenolic compound (mg GAE/g) 
and PCsup is the superficial phenolic compound (mg GAE/g).

Antioxidant activity (AA)
The AA was determined by measuring the inhibitory effect 
against the DPPH radical, following the method described by 
Shekhar and Anju (2014), with some modifications. Briefly, 
several microcapsules´s solutions (25, 50, 100, 150, and 200 
µg/mL) were prepared. Three milliliters of each solution were 
mixed with 1 mL of DPPH (0.1 mM). After 30 min of incuba-
tion, the absorbance of the solution was measured at 517 
nm. The AA was calculated using equation 6:

 (6)

where Abs control is the absorbance of the control and Abs 
sample is the absorbance of the sample. 

The EC50 value of the sample, which represents con-
centration required to inhibit 50 % of the DPPH radical, was 
calculated using the inhibition curve. 

Finally, microcapsules with the best properties, such as 
low solubility index, higher antioxidant activity, and greater 
encapsulation efficiency of phenolic compounds and probi-
otics, were selected for the next stage of this research. Once 
selected, the effect of applying these microcapsules to fresh 
pieces of jicama was studied.

Coating of minimally processed jicama roots
To determine the effect of the addition of the edible coating 
on the physicochemical and microbiological properties of the 
minimally processed jicama roots, five types of coatings were 
evaluated: (1) gelatin-maltodextrin (1:25) 26 % (w/w) aque-
ous solution (referred as “C”); (2) GCE at a final concentration 
of 4.2 mg GAE/mL and Lactobacillus acidophilus and Bifido-
bacterium spp. at a final concentration of 109 and 108 CFU/
mL, respectively, added to a gelatin-maltodextrin (1:25) at 26 
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% (w/w) aqueous solution (referred as “EP”); (3) GCE at a final 
concentration of 4.2 mg GAE/mL added to gelatin-maltodex-
trin (1:25) 26 % (w/w) aqueous solution (referred as “E”); (4) 
Lactobacillus acidophilus and Bifidobacterium spp. at a final 
concentration of 109 and 108 CFU/mL, respectively, added 
to gelatin-maltodextrin (1:25) 26 % (w/w) aqueous solution 
(referred as “P”), and (5) microcapsules obtained after double 
spray drying process (referred as “MC”).

The jicama roots were washed, disinfected, and cut into 
cubes (2 x 2 x 1 cm, 5±0.5 g) using a sterile knife. For coatings 
C, EP, E, and P, the jicama roots were immersed in the respec-
tive mixtures for one minute. For treatment MC, the jicama 
was coated with a thin layer of powder (approximately 0.3 
grams of microcapsules per piece). Previous results indicated 
that this method produced a uniform layer of the microcap-
sules on the surface of each jicama piece. The samples coated 
were stored in polypropylene containers (4 x 6 x 6 cm) at 4 °C 
for six days. Microbiological and physicochemical properties 
(weight loss, pH, color, total phenolic compounds, caffeine 
and chlorogenic acid) of the samples were analyzed at 0, 1, 
3, and 6 days.

Determination of shelf-life characteristics of jicama roots
To measure the weight loss, the jicama was weighed on 
the sampling days. The total weight loss was calculated by 
equation 7:

 (7)
 

The surface color of the jicama was determined using a 
portable colorimeter (ColorTec, Clinton, NJ, USA). The values 
of L* (luminosity), a* (-green a + red), and b* (-blue a + yellow) 
were recorded, and the chromaticity (C*) was then calculated 
using equation 8:
 

 (8)

To measure the pH, the samples were blended, and 
the juices were centrifuged at 4500 rpm for 3 min at 4 °C 
before measuring pH using a pH meter (Hanna Instruments 
HI981031, Woonsocket, RI, USA).

Quantification of total phenolic compounds (TPC), 
caffeine (CF) and chlorogenic acid (CL) in the jicama roots
The extracts used for TPC, CF and CL determinations were 
obtained according to the methodology described by Desai 
et al. (2019). For that, jicama samples were freeze-dried using 
a lyophilizer (Labconco FreeZone 4.5 L, Kansas City, USA) at - 
40 °C and 0.250 mbar for 48 h. Then, 0.5 g of the lyophilized 
sample was mixed with 2.5 mL of a methanol:acetic acid:wa-
ter solution (50:8:42 v/v/v). The mixture was shaken for 1 
min, sonicated twice in a Cole-Palmer ultrasonic bath model 
08855-00 (Cole-Palmer, Vernon Hills, IL, USA) at 25 °C for 20 
min, and finally centrifuged at 4000 rpm for 5 min. The su-

pernatant was used for quantifying the phenolic compound 
content according to Joya-Dávila et al. (2023).

Caffeine and chlorogenic acid were quantified by 
high-performance liquid chromatography (HPLC) with a 
Kromasil 100-5-C18 column (4.6 x 150 mm, 5 µm, 100 A- 
Supelco, Bellefonte, CA, USA), using a diode array detector 
(PerkinElmer Series 200 HPLC Systems, Shelton, CT, USA). The 
samples were filtered with a 0.22 µm millipore membrane. 
The mobile phase was acetonitrile/formic acid at 0.1 % 
(80:20, v:v) (Phase A) and formic acid at 1 % (v/v) (Phase B) at 
a 10:90 ratio with a constant flow of 1 mL per min in isocratic 
mode. Quantification was performed at 280 nm for CF and 
320 nm for CL, and 10 µL of the sample were injected into the 
HPLC. In addition, standard solutions of the analytes to be 
quantified (50, 100, 200, 300, 400, 500, and 700 mg/L) were 
prepared for elution times and respective calibration curves. 
Metabolites were expressed in milligram GAE per gram of 
jicama root in dry basis.

Experimental design and statistical analysis
A completely randomized experimental design with three 
replicates was employed for two evaluations. The results 
were analyzed using an analysis of variance (ANOVA) to 
determine significant differences between treatments (p 
≤ 0.05). Honestly-significant-difference (HSD) or Tukey test 
were used for mean comparisons. Statistical analyses were 
carried out using Statgraphics Centurion XVI software. 

RESULTS AND DISCUSSION
Survival of probiotics during the spray drying process
The results indicated that the encapsulation efficiency of 
Lactobacillus acidophilus and Bifidobacterium spp. was not 
significantly affected by the inlet air temperature, regardless 
of whether single or double spray drying was used. After the 
single drying, cell viability ranged from 9.39 to 9.12 log CFU/g 
for Lactobacillus acidophilus and 7.91 to 7.85 log CFU/g for 
Bifidobacterium spp. The encapsulation efficiency of both 
microorganisms at 120 or 140 °C after the single drying was 
around 90 % (Table 1). However, the encapsulation efficiency 
for both microorganisms after the double drying process 
was around 73- 77 %. Despite this reduction, cell viability 
remained at 7.2 log CFU/g for Lactobacillus acidophilus and 
6.2 log CFU/g for Bifidobacterium spp. Despite the decrease in 
cell viability, the use of chitosan as a coating material allowed 
obtaining powders with a probiotic content higher than 
106 CFU/g of microcapsules. Similar results were reported 
by Pupa et al. (2021) and Flores-Belmont et al. (2015), who 
encapsulated different species of lactic acid bacteria with 
chitosan through a double spray drying process, with encap-
sulation efficiencies of approximately 70 %.

Microcapsules properties
Micrographs, water solubility index (WSI), water absorp-
tion rate (WAR) and swelling capacity (SC) of microcap-
sules after single and double spray drying
Micrographs show that the microcapsules had a spherical 
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shape with dents and free of cracks on the surface, and an 
approximate average diameter of 15 µm (Figure 1). For mi-
crocapsules obtained by single and double spray drying at 
120 and 140 °C, the size did not differ. The solubility of the mi-
crocapsules obtained by single spray drying ranged from 88 
to 89 % (Table 2). These results are similar to those reported 
by Navarro-Flores et al. (2020), who encapsulated phenolic 
compounds using maltodextrin and other unconventional 
agents. These high solubility index could be attributed to the 
high solubility of the encapsulant agents (Fazaeli et al., 2012). 
Additionally, gelatin and maltodextrin contain hydrophilic 
sections, so they could interact and create a more soluble 
particle in aqueous environments (Semenova et al., 2002). 
Moreover, the water solubility index decreased for the micro-
capsules obtained by double microencapsulation through 
spray drying with chitosan (Table 2), compared with micro-
capsules obtained by single spray drying. This reduction can 
be attributed to the low solubility of chitosan at pH values 
above 6.5 (Aranaz et al., 2021). These results are similar to 
those reported by Flores-Belmont et al. (2015), who indicated 
that double microencapsulation with chitosan resulted in 
less insoluble powders in water (pH 7). 

Water absorption rate values of microcapsules ranged 
from 0.11 to 0.34 g/g (Table 2). These values are similar to 
those reported by other authors (Da Costa et al., 2018; Na-
varro-Flores et al., 2020). It has been reported that variations 
in WAR may be due to the different degrees of participation 
of hydroxyl groups present in encapsulant agents in the 
formation of hydrogen bonds with water (Ahmed et al., 2010; 
Da Costa et al., 2018). The WAR of microcapsules obtained by 
single spray drying were lower than those by double spray 
drying with chitosan. This reduction can be attributed to 
the low solubility of chitosan at pH values above 6.5 as men-
tioned previously. At basic pH, the amino groups of chitosan 
are in their deprotonated form (-NH2), which reduces their 
ability to interact with water and decreases the polymer´s 
solubility (Aranaz et al., 2021). SC values ranged from 0.037 to 
0.092 g/g (Table 2). The SC values decreased significantly (p ≤ 
0.05) for the microcapsules obtained by double spray drying 

Figure 1. SEM micrographs of spray-dried powder particle; simple spray-
dried process (a) and the double spray-dried process (b).
Figura 1. Micrografías SEM de partículas de polvo secado por aspersión; se-
cado por aspersión simple (a) y secado por aspersión doble (b).

Table 1. Inlet air temperature effect on microencapsulation efficiencies of 
Lactobacillus acidophilus and Bifidobacterium spp. after the spray drying 
process.
Tabla 1. Efecto de la temperatura del aire de entrada sobre la eficiencia 
de microencapsulación de Lactobacillus acidophilus y Bifidobacterium spp. 
después del proceso de secado por aspersión.

Spray drying Inlet air 
temperature (°C)

Lactobacillus 
acidophilus (%)

Bifidobacterium 
spp. (%)

120 92.13±1.28 a* 92.55±1.34 a

Single 140 92.28±1.49 a 91.31±2.83 a

120 76.24±0.54 b 77.18±0.11 b

Double 140 73.30±1.07 b 73.48±2.23 b

HSD 4.68 7.81

* Means followed by different lowercase letters in a column are significantly 
different according to the Tukey HSD test (p ≤ 0.05).
Medias seguidas con diferentes letras minúsculas en una columna son 
significativamente diferentes de acuerdo a la prueba de Tukey (p ≤ 0.05).

compared with microcapsules obtained by single spray dry-
ing, probably due to the presence of chitosan. Ahmed et al. 
(2010) reported that a low swelling capacity is related to the 
greater stability of microcapsules, which reduces their ability 
to swell. 

Encapsulation efficiency of phenolic compounds and 
antioxidant activity of microcapsules after single and 
double spray drying
The inlet air temperature and the double encapsulation 
process with chitosan did not have a statistically significant 
effect (p ≥ 0.05) on the encapsulation efficiency of phenolic 
compounds, with percentages ranges of 91.60 - 93.16 % 
(Table 3). The total phenol content in microcapsules ranged 
from 8.06 to 11.89 mg GAE/g of powder (Table 3). These 
values are similar to those reported by Desai et al. (2019) for 
green coffee extract encapsulated with maltodextrin, with a 
TPC of 11.98 mg GAE/g of powder.

The results indicated that increasing the inlet air tem-
perature to 140 °C or the double spray drying process, the 
total phenol concentration of the microcapsules decreased 
significantly (p ≤ 0.05). Despite the decrease in phenolic com-
pounds, the antioxidant activity, measured as IC50, remained 
unchanged. During spray drying, some phenolic compounds 
may degrade; however, new derivative compounds that are 
highly effective at inhibiting free radicals can be formed, as 
noted by Abrahão et al. (2019). Additionally, during thermal 
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process, the Maillard reaction can occur, producing complex-
es with varying degrees of antioxidant activity (Liang et al., 
2016).

The results also showed that around 110 - 116 µg/
mL of microcapsules was needed to inhibit 50 % of DPPH 
radical (IC50), and the double encapsulation process did not 
significantly affect this IC50 value. In addition, neither the 
inlet air temperature and double encapsulation caused sig-
nificant differences in the concentrations of chlorogenic acid 
and caffeine. This suggests that the double encapsulation 
process using chitosan effectively preserves both phenolic 
compounds and their antioxidant activity. 

Based on these results, only the microcapsules obtained 
by double spray drying with chitosan at an inlet air tempera-
ture of 120 °C were used for the subsequent jicama coating 
experiments.

Coating of minimally processed jicama roots
Determination of shelf-life characteristics
Weight loss results (Figure 2a) showed that jicama coated 
with microcapsules obtained by double encapsulation with 
chitosan (MC) showed the highest weight loss at the end of a 
6 days of storage. Moreover, EP, E, and P treatments provided 
a significant additional protection (p ≥ 0.05) against weight 
loss compared to treatment MC. Wong et al. (2021) reported 
that weight loss in food during storage is mainly due to water 
migration from plant tissues to the outdoor environment 
through transpiration. In addition, the moisture difference 
between the jicama and the environment was probably the 
driving force for weight loss.

The pH of the jicama decreased significantly during 
storage (p ≤ 0.05), with the lowest pH values observed in 
treatments containing probiotic microorganisms (MC, EP 
and P) compared to the treatments without probiotics 

Table 2. Water solubility index, water absorption, swelling capacity, phenolic compounds, chlorogenic acid content, caffeine content, IC50, and the microen-
capsulation efficiency of phenolic compounds of microcapsules by simple and double spray drying.
Tabla 2. Índice de solubilidad en agua, absorción de agua, capacidad de hinchamiento, compuestos fenólicos, contenido de ácido clorogénico, contenido de 
cafeína, IC50 y eficiencia de microencapsulación de compuestos fenólicos de microcápsulas mediante secado por aspersión simple o doble.

Treatment
Water solubility 

index 
(%)

Water 
absorption rate 

(g/g)

Swelling 
capacity 

(g/g)

Phenolic 
compound
(mg EAG/g)

Chlorogenic 
acid 

(mg/g)

Caffeine
(mg/g)

Microencapsulation 
efficiency of phenolic 

compound (%)

IC50
(µg/mL)

Single 120 °C 88.53±1.47 a* 0.11±0.04 b 0.078±0.011 a 11.89±0.01 a 4.57±0.02 a 2.74±0.38 a 92.14±0.11 a 110.21±2.61 a

Single 140 °C 89.93±1.95 a 0.12±0.02 b 0.092±0.022 a 8.93±0.66 b 4.43±0.22 a 2.70±0.04 a 93.16±0.60 a 114.43±1.65 a

Double 120 °C 78.90±0.76 b 0.34±0.05 a 0.037±0.002 b 9.62±0.12 b 4.21±0.31 a 2.47±0.05 a 91.60±0.40 a 111.42±3.37 a

Double 140 °C 78.39±0.15 b 0.30±0.08 a 0.037±0.002 b 8.06±0.44 b 4.28±0.01 a 2.22±0.12 a 92.19±0.23 a 116.28±0.97 a

HSD 3.34 0.14 0.03 1.64 0.77 0.83 1.56 9.51

*Means followed by different lowercase letters in the same column are significantly different according to the Tukey HSD test (p ≤ 0.05).
Medias seguidas con diferentes letras minúsculas en la misma columna son significativamente diferentes de acuerdo a la prueba de Tukey (p ≤ 0.05).

Table 3. Total phenolic compounds content in jicama roots during storage at 4 °C for six days.
Tabla 3. Contenido total de compuestos fenólicos en jícama durante el almacenamiento a 4 °C durante seis días.

Phenolic compounds (mg GAE/g of jicama roots in dry base)

Treatment
Time (days)

HSD
0 1 3 6

C 0.99±0.01 cA* 0.99±0.01 cA 0.96±0.01 cA 0.99d±0.02 cA 0.06

EP 1.50±0.02 bA 1.50±0.04 bA 1.50±0.01 bA 1.49.44±0.01 bA 0.10

E 1.50±02 bA 1.50±0.03 bA 1.50±0.03 bA 1.49±0.01 bA 0.07

P 0.97±0.01 cA 0.98±0.01 cA 0.98±0.1 cA 0.98±0.01 cA 0.03

MC 4.31±0.12 aA 3.93±0.02 aAB 3.38±0.21 aBC 3.00±0.12 aC 0.57

HSD 0.22 0.09 0.40 0.22

C (Control), EP (green coffee extract/probiotics), E (green coffee extract), P (probiotics), MC (microcapsules with chitosan 
obtained by double spray drying). *Means followed by different lowercase letters in the same column are significantly different 
according to the Tukey HSD test (p ≤ 0.05). Means followed by different uppercase letters in the same row are significantly 
different according to the Tukey HSD test (p ≤ 0.05).
C (Control), EP (extracto de café verde/probiótico), E (extracto de café verde), P (probióticos), M (microcápsulas con quitosano 
obtenidas mediante doble secado por aspersión). * Medias seguidas con diferentes letras minúsculas en la misma columna son 
significativamente diferentes de acuerdo a la prueba de Tukey (p ≤ 0.05). Medias seguidas con diferentes letras mayúsculas en 
la misma linea son significativamente diferentes de acuerdo a la prueba de Tukey (p≤ 0.05).
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(Figure 2a). This could be attributed to the fact that during 
storage of jicama, even under refrigeration, probiotics could 
use the nutrients present in the coating and/or jicama piec-
es, producing organic acids, such as lactic acid, which could 
cause a decrease in pH. Wong et al. (2021) reported similar 
pH decreases in fresh-cut apple slices coated with Lactoba-
cillus plantarum. The decrease in pH during the storage of 
minimally processed foods can be attributed to the activity 
of endogenous enzymes, which can produce acids and con-
tribute to pH reduction. In treatments containing probiotics, 
the pH decrease can be attributed to the microbiological 
activity of the added microorganisms (Varoquaux and Wiley, 
2017). Among the treatments with probiotics, the most 
pronounce pH reduction in jicama was observed in those 
with free microorganisms (treatments EP and P) (Figure 2a). 
This pH reduction could suggest a likely decrease in product 
acceptance. Otherwise, the pH of the jicama coated with the 
microcapsules (treatment MC) remained almost constant 
during storage. This could be attributed to the fact that spray 
drying decreased the cell metabolic activity of the bacterial 
cells (Behboudi-Jobbehdar et al., 2013). 

Color is another important attribute of minimally pro-
cessed foods, as affects the appearance and consumer’s ac-
ceptance of the product. On the cutting surface, cell rupture 

can occur, allowing substrates and oxidizers to come into 
contact. Therefore, one of the main objectives during the 
minimum processing of fruit and vegetables is to preserve 
the original color. Changes in the color of the samples were 
expressed through chromaticity (value C*) and luminosity 
(L*) with respect to time (Figure 2 c). In general, the results 
indicated that at the beginning of storage, the samples that 
had the coating with the unencapsulated green coffee ex-
tract (E and EP) were significantly opaquer than the control, 
whereas samples coated with powder obtained from double 
spray drying showed L* values similar to the control treat-
ment. This behavior could be attributed to the color masking 
effect of the encapsulant agents on the color of the green 
coffee extract (Piedrahíta et al., 2018). After 6 days of storage, 
however, there was no significant statistical difference (p ≥ 
0.05) in the luminosity of the samples. Color changes in the 
samples were expressed through chromaticity (C* value) 
over time; after 6 days of storage, there were no significant 
changes in the color of the samples.

Viability of probiotic microorganisms in jicama
The viability of Lactobacillus acidophilus and Bifidobacterium 
spp. in different types of coatings for minimally processed of 
jicama´s pieces during storage at 4 °C are shown in Figures 

Figure 2. Effect of different types of coatings on weight loss (a), pH (b), luminosity (c) and chromaticity (d) of jicama during 
storage at 4 °C for six days. C (Control); EP (green coffee extract/probiotics); E (green coffee extract); P (probiotics); MC (mi-
crocapsules with chitosan obtained by double spray drying).
Figura 2. Efecto de diferentes tipos de recubrimientos sobre la pérdida de peso (a), pH (b), luminosidad (c) y cromaticidad 
(d) de jícama mínimamente procesada durante el almacenamiento a 4 °C durante seis días. C (Control); EP (extracto de café 
verde/probióticos); E (extracto de café verde); P (probióticos); MC (microcápsulas con quitosano obtenidas por secado por 
aspersión doble).
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3a and 3b, respectively. As can be seen, the number of Lacto-
bacillus acidophilus and Bifidobacterium spp. cells remained 
constant during the 6 days of storage in EP and P treatments. 
This could have occurred because microorganisms remain 
metabolically active, probably by using impregnated carbo-
hydrates and/or nutrients from the jicama as a carbon source 
(Wong et al., 2021). For the MC treatment (jicama coated 
with microcapsules) after 3 days of storage, the viability of 
microorganisms decreased significantly (p ≤ 0.05) (Figures 3a 
and 3b), probably because double spray drying with chitosan 
caused damage to the cell membrane of the probiotics. 
Therefore, when the microcapsules were applied to the jica-
ma, they were hydrated, and the probiotics were reactivated. 
However, the microorganisms, having been damaged in the 
double drying, began their death phase. 

Total phenol, caffeine, and chlorogenic acid content 
during the storage of minimally processed jicama roots
The results of the total phenol content (mg/g of jicama roots 
in dry basis) during storage are presented in Table 3. The con-

trol treatment had a total phenol concentration of 0.99 mg 
GAE/g. Treatments E, EP, and MC exhibit higher total phenol 
content than the control (C). These results could be attributed 
to the green coffee extract present in these treatments, which 
were reported as an excellent source of phenolic compounds 
(Desai et al., 2019). The main phenolic compounds present in 
the green coffee extract are caffeine and chlorogenic acid, so 
these metabolites were quantified (Supplementary Fig. S1). 
Treatments C and P did not show detectable levels of caffeine 
or chlorogenic acid. In contrast, treatments E and EP resulted 
in caffeine and chlorogenic acid content to remain in the 
range of 0.43 - 0.38 mg/g and 0.42- 0.41 mg/g, respectively, 
throughout storage.

In the MC treatment, the content of caffeine (0.72 - 0.48 
mg/g) and chlorogenic acid (1.11- 0.55 mg/g) were signifi-
cantly higher (p ≤ 0.05) during the entire storage compared 
with the other treatments. During storage, the concentration 
of total phenols, caffeine, and chlorogenic acid decreased 

Figure 3. Effect of different types of coatings on cell viability of Lactobaci-
llus acidophilus (a) and Bifidobacterium spp. (b) during the storage of jicama 
roots at 4 °C for six days. EP (green coffee extract/probiotics); P (probiotics); 
MC (microencapsulated with chitosan obtained by double spray drying). The 
other treatments are omitted because they were not inoculated.
Figura 3. Efecto de diferentes tipos de recubrimientos sobre la viabilidad 
celular de Lactobacillus acidophilus (a) y Bifidobacterium spp. (b) durante el 
almacenamiento de jícama a 4 °C durante seis días. EP (extracto de café ver-
de/probióticos); P (probióticos); MC (microencapsulado con quitosano obte-
nido por secado por doble pulverización). Los demás tratamientos se omiten 
por no ser inoculados.

Figure S1. Effect of different types of coating on the caffeine (a) and chlo-
rogenic acid (b) content in jicama roots during storage at 4 °C for six days. E: 
green coffee extract; EP: green coffee extract/probiotics; MC: Microencapsu-
lated with chitosan obtained by double spray drying.
Figura S1. Efecto de diferentes tipos de recubrimiento sobre el contenido 
de cafeína (a) y ácido clorogénico (b) de raíces de jícama durante el alma-
cenamiento a 4 °C durante seis días. E: extracto de café verde; EP: extracto 
de café verde/probióticos; MC: Microencapsulado con quitosano obtenido 
mediante secado por aspersión doble.
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significantly (p ≤ 0.05) in the samples of the MC treatment 
(jicama coated with the microcapsules obtained by double 
spray drying), compared with the other treatments. It has 
been reported that incorporating probiotics into vegetables 
matrices using the immersion technique allows microor-
ganisms to enter the interior of the food through capillarity, 
promoting their adherence and protecting them from exter-
nal conditions (De Oliveira et al., 2017). Additionally, refriger-
ation helps maintain the stability of probiotics, as reported 
by Wong et al. (2021). However, the MC treatment presents a 
higher content of these phenolic compounds (caffeine and 
chlorogenic acid) throughout the complete jicama storage. 
The reduction of these compounds concentration could be 
originated for the microcapsule’s hydration and their partial 
hydration during the storage of the food, which causes the re-
lease of phenolic compounds into the outside environment. 
Franҫa et al. (2018) reported that in chitosan microcapsules 
the active compound is trapped in the nucleus and covered 
by a chitosan layer, which, depending on storage conditions, 
can swell and then release the nutrient. 

CONCLUSIONS
In this study, microcapsules containing probiotics and phe-
nolic compounds were obtained through single and double 
spray drying at 120 and 140 °C. Double spray drying with 
chitosan allowed microcapsules with a microbial popula-
tion higher than 106 CFU/g and 9.62 mg GAE/g of phenolic 
compounds. Moreover, these microcapsules were used as 
an edible coating containing probiotics and phenolic com-
pounds from green coffee, applied to minimally processed 
jicama root. Jicama pieces with encapsulated probiotics and 
phenolic compounds can be considered functional food due 
to their enhanced nutritional quality. To the best of the au-
thors’ knowledge, this is the first investigation incorporating 
a chitosan coating, obtained through a double spray drying 
process, into a minimally processed food. The microcapsules 
developed with the encapsulated probiotics and phenolic 
compounds allowed preserved the viability of probiotics and 
the concentration of phenolic compounds, such as caffeine 
and chlorogenic acid, in jicama during storage. This study 
reports the formulation and production of a functional food 
with high nutritional value and that can be used as a healthy 
snack. However, further research is recommended to extend 
the shelf life of coated jicama to enhance its appeal to indus-
trial manufacturers.
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