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ABSTRACT
This research aimed to analyze the ability of the plant Bro-
melia karatas to tolerate and bioaccumulate lead (Pb) in its 
tissues, as well as its potential use as a bioindicator of con-
tamination. The research was conducted under controlled 
conditions, exposing the plants to different concentrations 
of Pb for 63 d and measuring morphometric variables such 
as leaf count, height, and chlorophyll content. Statistical 
analyses, including ANOVA and Tukey HSD, showed that the 
plant can tolerate Pb levels without significant differences in 
growth and chlorophyll compared to unexposed plants. At 
the end of the experiment, the presence of Pb in the plant 
tissues (leaves and roots) was analyzed and detected using 
ICP-OES equipment. This research revealed the potential of 
Bromelia karatas as a bioindicator of Pb contamination in soil, 
as it exhibited visible symptoms of leaf damage at high doses 
of the pollutant. The low cost, ease of reproduction, and por-
tability of bromeliads compared to other bioindicators make 
it a preferable option for environmental biomonitoring, 
highlighting its effectiveness and affordability.
Keywords: Environmental pollution, absorption, metals 
toxic, ICP-OES.

RESUMEN
Esta investigación tiene como objetivo analizar la capacidad 
de la planta Bromelia karatas para tolerar y bioacumular 
plomo (Pb) en sus tejidos, así como su potencial uso como 
bioindicador de contaminación. La investigación se reali-
zó en condiciones controladas, exponiendo las plantas a 
diferentes concentraciones de Pb durante 63 d y midiendo 
variables morfométricas como el conteo de hojas, altura y 
contenido de clorofila. Los análisis estadísticos, incluyendo 
ANOVA y Tukey HSD, mostraron que la planta puede tolerar 
niveles de Pb sin diferencias significativas en el crecimiento 
y la clorofila en comparación con las plantas no expuestas. 
Al final del experimento, se analizó y detectó la presencia 
de Pb en los tejidos de la planta (hojas y raíces) mediante 
un equipo ICP-OES. Esta investigación reveló el potencial de 
Bromelia karatas como bioindicador de contaminación por 
Pb en el suelo, ya que exhibió síntomas visibles de daño foliar 
a altas dosis del contaminante. El bajo costo, la facilidad de 
reproducción y la portabilidad de las bromelias en compa-

ración con otros bioindicadores la convierten en una opción 
preferible para el biomonitoreo ambiental, destacando su 
efectividad y asequibilidad.
Palabras clave: Contaminación ambiental, absorción, meta-
les tóxicos, ICP-OES.

INTRODUCTION
Toxic metal contamination is a problem that has been incre-
asing, mainly due to human activities. Among the principal 
sources of contamination are mining, metallurgy, agriculture, 
motor vehicles, and the natural contribution of certain aqui-
fers (Covarrubias and Peña-Cabriales, 2017).

Heavy metals are those metallic chemical elements that 
have a weight greater than 5 g/cm3 and are poisonous at low 
concentrations (Collin et al., 2022). Lead (Pb) is a highly toxic 
metal, mainly present in the environment due to anthro-
pogenic activities such as industry, mining, and smelting 
(Prieto-Méndez et al., 2009), with a reported median lethal 
dose for humans of 400 mg/kg (Villalón-López et al., 2019). 
Due to the high toxicity of lead, some US federal agencies 
have issued standard values in different sources. The Center 
for Disease Control and Prevention (CDC) sets the standard 
value in blood at 5 μg/dL, the Environmental Protection 
Agency (EPA) at 15 μg/m3 in air, and 15 μg/dL in drinking 
water (Villalón-López et al., 2019).

The high levels of toxic metals such as lead, nickel, 
cadmium, and manganese, among others, can be dangerous 
due to their non-biodegradable nature, the toxicity they 
exert on different crops, and their bioavailability tend to 
accumulate in soils and waters of great importance for the 
agriculture and other activities (Ortiz-Cano et al., 2009). Plant 
species that concentrate more than 1000 mg of Pb kg-1 of 
matter are considered lead accumulators (Rodriguez-Ortíz et 
al., 2006). The bioremediation capacity of plants depends on 
the species, which have been studied in bodies of water and 
soil contaminated with lead, since can adsorb large amounts 
of this metal (Tetraena qataranse 2784 mg/kg; Conyza cana-
densis 1.308 ± 0.043 mg/kg (roots) and 8.517 ± 0.136 mg/kg 
(shoots); Helianthus annus 7.76 mg/kg) (Collin et al., 2022).

Although lead is not an essential element for plants, it 
is easily absorbed and concentrated in different parts of the 
plant. The absorption of Pb in plants is regulated by pH, the 
size of the particles; and the cation exchange capacity of 
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the soil, as well as by the exudation of the roots and other 
physicochemical parameters.

The phases of the process by which plants incorporate 
and accumulate heavy metals are the following (Navarro-
Aviñó, 2007):

Phase I. It involves the transport of heavy metals into the 
plant and then into the cell. The root is the main entry tissue 
for metals, which arrive by diffusion in the medium, by mass 
flow or by cation exchange. The root has negative charges on 
its cells, due to the presence of carboxyl groups, which inte-
ract with the positive charges of the heavy metals, creating a 
dynamic equilibrium that facilitates entry into the cell, either 
by apoplastic or symplastic means (Navarro-Aviño, 2007).

Phase II. Once inside the plant, the metal species are 
sequestered or complexed by binding to specific ligands. 
Among the chelators produced by plants are organic acids 
(citric, oxalic and malic acids), some amino acids (histidine 
and cysteine) and two classes of peptides: phytochelatins 
and metallothioneins. Phytochelatins are high-affinity 
ligands that have glutathione as a substrate. They are basi-
cally made up of 3 amino acids: glutamic acid, cysteine and 
glycine, linked by peptide bonds.

Metallothioneins are polypeptides of about 70 - 75 
amino acids with a high content of cysteine, an amino acid 
capable of forming complexes with cations through the sul-
fhydryl group. They have a marked affinity for the ionic forms 
of Zn, Cd, Hg and Cu.

Phase III. It involves compartmentalization and detoxi-
fication, a process by which the ligand-metal complex is 
retained in the vacuole.

The excess of Pb causes a series of toxicity symptoms in 
plants, stunted growth, chlorosis, and blackening of the root 
system. Pb inhibits photosynthesis, alters mineral nutrition 
and water balance, changes hormonal status, and affects 
the structure and permeability of the membrane; however, 
remediation of Pb-contaminated soils using phytoremedia-
tion and rhizofiltration technologies has a greater potential 
to clean up soils contaminated with Pb (Sharma et al., 2005).

Lead is absorbed through the lungs and from the gas-
trointestinal tract. The mechanism of action is performed by 
binding to sulfhydryl groups and toxic to zinc-dependent 
enzymes. Diagnosis is difficult because the symptoms are 
multisystemic: asthenia, abdominal pain, irritability, nausea, 
vomiting, weight loss, headache, anemia, and peripheral 
neuropathy, among others (Infantas, 2005).

A bioindicator can be define as an organism, part of an 
organism, or a community of organisms, used to obtain infor-
mation about the quality of an environment. These show the 
property of responding to the variation of particular abiotic 
or biotic factor of the environment, in such a way that the 
response is reflected in the change of the characteristics in 
one or more variables of the organism, which are known as 
bioindicator variables (Garbisu et al., 2007).

Bioindicators are also known as highly sensitive or-
ganisms to their environment, with a certain tolerance 
regarding one or more environmental factors (Gagan et al., 

2017). They change aspects of their form, can disappear 
or, on the contrary, can prosper despite the contamination 
of their environment. Indicator organisms can show macro 
or microscopic morphological changes, or accumulate the 
contaminant in the tissues when exposed to higher concen-
trations (Graciano et al., 2002).

The epiphytic bromeliads to which Bromelia karatas 
belongs, are sensitive to variations in light, water, and tem-
perature, presenting morphological changes generated by 
climate change (Cash-Perez et al., 2014). Bromelia karatas, 
has a very short stem, homorrhice root, lanceolate leaf, and 
rosettes with branches on the stem, with limited growth, 
bearers of flowers, and elongated, bittersweet and juicy fruit 
(Montes-Rojas et al., 2014). Bromelia karatas, in addition to its 
sensitivity as a bioindicator, has potential use in industry and 
food, since it generates antioxidant metabolites (Moyano et 
al., 2012).

Bromelia karatas grow in Mexico (Campeche, Chiapas, 
Guerrero, Jalisco, Michoacán, Nayarit, Oaxaca, Querétaro, 
Sinaloa, San Luis Potosí, Veracruz and Yucatán), Central Ame-
rica (Belize, Guatemala and Panama), Les Antilles and nor-
thern South America (Espejo-Serna et al., 2005). Due to their 
tropical cradle, bromeliads are exotic in Northern countries, 
so they are among the most valued ornamental plants in the 
world along with orchids, Araceae and heliconias, among 
others (Miranda-Jiménez et al., 2007).

Throughout history, bromeliads are monocotyledons 
that were consumed by natives since pre-Hispanic times. 
The use as food includes from the complete fruit to a part 
of the plant, consumed as vegetables or in prepared drinks 
(fermented or not). Currently, they are employed in Latin 
America more as vegetables than as fruits (Hornung-Leoni et 
al., 2011). An alternative to contribute to the solution of these 
problems is the use of plant species for the removal and ac-
cumulation of contaminating agents, for which this research 
focused on the evaluation of the capacity of Bromelia karatas 
to remove Pb from the soil, being used as a bioindicator of 
these pollutants in the environment.

MATERIAL AND METHODS
Obtaining the experimental units
The experimental unit used for this investigation was the 
Bromelia karatas; fruits were collected to obtain seeds and 
later germinate them, thus obtaining the plants to be used. 
With the support of the Institute of Natural History (INH), the 
fruits were collected in the municipality of San Fernando, 
Chiapas, Mexico, at coordinates LN 16° 48’ 12’’ and LW 93° 12’ 
01’’, altitude 880 masl. The fruit was dissected and pulped to 
obtain the seeds, which were washed until the pulp residues 
were removed, followed by drying at room temperature for 
10 days to later be germinated.

Seeds were sown in a 200-unit seedbed with Peat moss 
(Canadian peat) as a substrate. Germination occurred 21 
days after sowing, having a total of 180 germinated seeds by 
day 25. The germination percentage was 90 %. Finally, after 
50 days of germination (in the nursery), the seedlings were 
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transplanted into 30 x 30 cm planter bags until they were 
used in the different experiments.

Experimental design
Forty 200-day-old Bromelia karatas plants were used, of 
which 30 were transplanted into a substrate (Peat moss) con-
taminated with Pb, and the last 10 were transplanted into an 
uncontaminated substrate (Control). Lead Nitrate Pb(NO3)2) 
was used as a polluting agent. The experimental design used 
was a Completely Random Design (CRD) with 4 treatments, 
Tc = 0, T1 =1000, T2 =2000 and T3 =3000 mg Pb • Kg-1 substra-
te (Gagan et al., 2017). Each treatment contained ten experi-
mental units, the experimental phase lasted 63 days. During 
this period, measurements of the morphometric variables 
were made (number of leaves, height measurement, and 
chlorophyll quantification). At the end of the experimenta-
tion, the samples were prepared to analyze the presence of 
Pb in the plant tissues (leaves and roots).

Morphometric analyzes of plants
Analysis of morphometric variables: Plant height and 
chlorophyll quantification
Every seven days, measurements of morphometric variables 
were carried out, such as the total leaf count (to know the 
formation of new leaves), and the height of the plant, obtai-
ned with the help of a flexometer, measured from the stem 
(inconspicuous) to the highest leaf because our plant has 
a rosette shape. The amount of chlorophyll was quantified 
with the Chlorophilometer, Soil Plant Analysis Development 
(Minolta SPAD 502), three leaves were measured in total, 
taking a lower leaf, a middle leaf, and an upper leaf to obtain 
an average.

This instrument non-destructively measures the light 
transmission of the leaf at the red and infrared wavelengths 
at 650 and 940 nm (nanometers), respectively, producing a 
numerical output indicating the greenness of the leaf (the 
higher the number given by the instrument, the greener 
the leaf ). Compared to more expensive extraction methods, 
the SPAD meter can rapidly estimate chlorophyll content 
(Yamamoto et al., 2002). In plant nutrition studies, the SPAD 
meter has been used successfully to estimate nitrogen status 
in different types of plants (Lombard et al., 2010).

Determination of Pb in plant tissues
At the end of the experimental phase, the plants were 
collected and divided into two parts: leaves and roots. The 
roots were completely washed until the excess substrate 
was removed; they were cut and dried in an oven at 70°C for 
24 hours (h), having the tissues completely dry, they were 
crushed with liquid nitrogen and homogenized to a size of 
0.8 millimeters (mm) with the help of a sieve (Altıntıg et al., 
2014).

An amount of 0.5 grams (g) of sample were taken and 
placed in 50 milliliter (mL) glass vials, 7 mL of 70% nitric 
acid (HNO3) were added, and 3 mL of tridistilled water was 
brought to reflux at a temperature of 90 ± 5 °C for 60 - 90 

m(min), it was allowed to cool and later 10 mL of tridistilled 
water and 3 mL of 70 % HNO3 were added, refluxed again 
at 90 ± 5 °C for 90 - 120 min (until 5 mL were obtained) and 
allowed to cool. Finally, the samples were filtered (2 times) 
through Whatman #1 filters, and tridistilled water was added 
to the filtered solution in Falcon tubes up to a volume of 25 
mL and analyzed by the ICP-OES technique (Thermo Fisher 
iCAP 6300, USA). Before the analysis, the calibration curve 
was built using a multi-element standard containing Pb (0.01 
to 10 μg/mL) (HIGH PURITY STANDARDS, USA). A solution of 
5 μg/mL of Pb was used as QC. Three repetitions were made 
for each sample. The power of the nebulizer pump was 1150 
W with a flow of 0.50 L/min (Ulkuhan et al., 2012; Altıntıg et 
al., 2014).

Determination of Pb in the Substrate
Samples of substrate (Peat moss) used in the experimen-
tation were analyzed to determine the lead content.
For its analysis, samples of previously homogenized substra-
te were taken with the help of a 0.08 mm sieve and dried in 
an oven at 80 °C for 24 h (Osma et al., 2014). An amount of 0.5 
g of sample was taken and placed in 50 mL glass vials (with 
five boiling beads for each vial), 5 mL of 70% HNO3 and 5 mL 
of tridistilled water were added to it, refluxed at 90 ± 5 °C for 
50 to 60 min, allowed to cool and then 5 mL of 95 - 98 % HNO3 
were added, refluxed at 90 ± 5 °C for 50 min, and allowed to 
cool. Then, 5 mL of 70% HNO3 and 3 mL of tridistilled water 
were added, it was refluxed again at 90±5 °C for 90 to 120 min 
(until 5 mL was obtained) and it was allowed to cool. Ten mL 
of 35-37% hydrochloric acid (HCl) were added in the same 
way, it was brought to reflux at 90 ± 5 °C for 60 min (until 
5 mL were obtained) and it was allowed to cool. Finally, the 
samples were filtered (2 times) through Whatman #1 filters, 
tri-distilled water was added to the filtered solution in Falcon 
tubes until reaching a capacity of 25 mL.

Statistical analysis 
The results were analyzed using one-way ANOVA tests, with 
a significance level of 0.05, using the Statgraphics Centurion 
XVI.II software, and Tukey honestly-significant-difference 
(HSD) test for comparison of means.

RESULTS AND DISCUSSION
Plant morphometric measurements
The measurements were made every seven days, during the 
experiment lasting 63 d (2 months) obtaining a total of 10 
measurements. Day 0 indicates the beginning of the expe-
riments, also indicating how the experimental units used 
were. Tables 1, 2 and 3, show the averages of each of the mea-
surements of the morphometric variables. The measurement 
of growth of the new leaves is performed at the beginning 
and at the end of the experiment, as well as the statistical 
analysis for each of them (Figures 1 and 2). It is observed that 
on day zero it does not have measurement data, since the 
experiment begins.
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Table 1. Number of leaves at 63 days with different amount of substrate. 
Tabla 1. Número de hojas a 63 días con las diferentes cantidades de sustrato.

Days Control (Tc)
Treatment 

1 (T1)
Treatment 

2 (T2)
Treatment 3 

(T3)

0 8 ± 0.3958 9 ± 0.3667 8 ± 0.3667 8 ± 0.2333

7 9 ± 0.4667 9 ± 0.4069 9 ± 0.3667 9 ± 0.3399

14 10 ± 0.4422 10 ± 0.3887 9 ± 0.4269 9 ± 0.2333

21 10 ± 0.5175 10 ± 0.4422 10 ± 0.4422 10 ± 0.3399

28 11 ± 0.5375 11 ± 0.3887 10 ± 0.4485 10 ± 0.2494

35 11 ± 0.5207 11 ± 0.4422 11 ± 0.4422 11 ± 0.3399

42 12 ± 0.5333 12 ± 0.3887 11 ± 0.4269 11 ± 0.2769

49 13 ± 0.5972 12 ± 0.4422 12 ± 0.4485 12 ± 0.3399

56 13 ± 0.5416 13 ± 0.4333 12 ± 0.4269 12 ± 0.2769

63 14 ± 0.5467 13 ± 0.4230 13 ± 0.4485 13 ± 0.3416

Tc = without Pb; T1 = 1000 mg Pb • Kg-1 substratum; T2 = 2000 mg Pb • Kg-1 
substratum; T3 = 3000 mg Pb • Kg-1 substratum.

Table 2. Height of the plants in (cm) at 63 days with different amount of 
substrate. 
Tabla 2. Altura de las plantas en (cm) con las diferentes cantidades de 
sustrato.

Days Control (Tc)
Treatment 1 

(T1)
Treatment 2 

(T2)
Treatment 3 

(T3)
0 7.9 ± 0.2544 7.3 ± 0.4639 5.9 ± 0.1645 6.4 ± 0.4006

7 8.4 ± 0.2688 7.8 ± 0.4968 6.4 ± 0.1703 7.2 ± 0.4549

14 8.9 ± 0.2713 8.2 ± 0.5236 6.9 ± 0.1809 7.5 ± 0.3962

21 9.3 ± 0.2840 8.7 ± 0.5336 7.3 ± 0.2010 8.1 ± 0.5093

28 9.8 ± 0.2867 9.2 ± 0.5492 7.8 ± 0.2063 8.3 ± 0.4328

35 10.4 ± 0.3592 9.7 ± 0.5675 8.3 ± 0.2163 8.6 ± 0.4465

42 10.8 ± 0.3906 10.2 ± 0.5835 8.7 ± 0.2146 9.1 ± 0.4428

49 11.3 ± 0.4077 10.7 ± 0.5992 9.2 ± 0.2372 9.4 ± 0.5156

56 11.8 ± 0.4225 11.1 ± 0.6044 9.6 ± 0.2516 9.9 ± 0.5067

63 12.3 ± 0.4279 11.5 ± 0.6129 10.0 ± 0.2687 10.5 ± 0.4527

Tc= without Pb; T1 = 1000 mg Pb • Kg-1 substratum; T2 = 2000 mg Pb • Kg-1 
substratum; T3 = 3000 mg Pb • Kg-1 substratum.

Table 3. Chlorophyll quantification in SPAD units at 63 d with different 
amount of substrate. 
Tabla 3. Cuantificación de clorofila en unidades SPAD con las diferentes 
cantidades de sustrato.

Days Control (Tc)
Treatment 1 

(T1)
Treatment 2 

(T2)
Treatment 3 

(T3)

0 29.27 ± 1.6874 24.47 ± 2.0273 28.77 ± 1.7315 28.54 ± 1.8910

7 35.58 ± 1.5295 33.43 ± 2.0180 38.32 ± 1.4859 36.79 ± 1.7791

14 29.45 ± 1.2055 27.67 ± 1.3871 29.98 ± 0.6616 28.27 ± 1.1582

21 35.20 ± 1.2765 31.39 ± 1.1281 33.50 ± 1.1218 31.15 ± 1.4931

28 41.42 ± 0.8478 36.71 ± 1.2845 39.63 ± 0.6511 36.83 ± 1.1750

35 36.89 ± 0.5748 32.63 ± 1.5940 33.88 ± 0.8402 31.24 ± 0.8566

42 42.70 ± 1.0206 38.56 ± 1.7146 38.90 ± 0.8207 34.42 ± 0.9095

49 42.27 ± 0.9653 38.92 ± 1.3072 40.57 ± 0.8831 37.23 ± 0.6057

56 44.65 ± 0.9903 40.02 ± 2.0761 38.50 ± 1.3993 34.69 ± 0.9627

63 43.19 ± 0.8444 32.90 ± 2.1012 30.53 ± 1.2904 30.01 ± 0.7933

Tc= without Pb; T1 = 1000 mg Pb • Kg-1 substratum; T2 = 2000 mg Pb • Kg-1 
substratum; T3 = 3000 mg Pb • Kg-1 substratum.

 

 
 

0

1

2

3

4

5

6

7

0 7 14 21 28 35 42 49 56 63

N
ew

s 
 le

av
es

Days

Tc= Without Pb T1=1000 mg Pb/Kg substratum

T2=2000 mg Pb/Kg substratum T3=3000 mg Pb/Kg substratum

a 

b 

Figure 1. New leaves every 7 d (a) and ANOVA New leaves every 7 d (b) with 
different amount of substratum.
 Figura 1. Hojas nuevas cada 7 d (a) y ANOVA Hojas nuevas cada 7 d (b) con 
las diferentes cantidades de sustratos.
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Figure 2. News leaves at 63 days with different amount of substratum.
Figura 2. Hojas nuevas a los 63 días con las diferentes cantidades de 
sustratos.

Figure 1a shows the number of new leaves that were 
born every seven days from the beginning of the experiment 
until the end of the 63 days, it is observed that the control 
(Tc) always had the highest measurement, compared to the 
other treatments. Figure 1b shows no significant statistical 
difference between the treatments. Figure 2 shows the Tukey 
HSD test of the response variable (new leaves) with 95% 
confidence, of the different treatments. At the end of the 
experimentation, treatment C had, on average, one more leaf 
compared to the other treatments; from day 42 treatments 
1, 2, and 3 (T1, T2 and T3) had similar averages, at 63 days T2 
and T3 were equal in average new leaves. 
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Plant height (grown centimeters)
Figure 3a show that at seven days after starting the expe-
riment, T3 had grown 0.8 cm and C, T2, and T3 0.5 cm. It is 
clear that T3 had a higher growth compared to the other 
treatments, observing this trend until 21 days; from day 35 
the situation changed, with Tc being the highest measure-
ment and T3 the lowest data of the four treatments, which 
was maintained in the following measurements until the end 
of the experiment. Figure 3b. shows that there is no signifi-
cant statistical difference between the treatments, and Figure 
4 shows that there is no statistically significant difference in 
the response variable (centimeters grown) between the four 
treatments, using the Tukey test.

Chlorophyll quantification
Regarding the amount of chlorophyll, Figure 5a shows the 
increase or decrease of chlorophyll every seven days, giving 
the understanding that only the data of chlorophyll amount 
had increased or decreased in relation to the amount of chlo-
rophyll that the plants had at the beginning of the experi-
ment was expressed. Seven days after the start of stress with 
Pb, Tc had increased by 6.3 SPAD units, being the treatment 
that had the lowest increase even below T3, which presented 
a data of 8.2 SPAD, while T2 was the highest with 9.5 SPAD; on 
day 14 both Tc and T3 had a decrease compared to the data 
shown at 7 d, for C of 6.3 SPAD that had increased decreased 
6.1 SPAD, while T3 indicated an even lower data than it had at 
the beginning of the experimentation, from day 21 T3 was the 
lowest followed by T2. This sequence was maintained until 
63 d when the experiment ended, and treatments Tc and T1 
were the ones that yielded the highest chlorophyll increase 
data, maintained until 56 d for T2 given that at 63 d you have 
a decrease in chlorophyll; C was the highest at the end of the 
experimentation compared to the other treatments. Figure 
5b shows that there is no significant statistical difference 
between the treatments.
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Figure 3. Growth (cm) every 7 days (a) and ANOVA Centimeters grown every 
7 days (b).
Figura 3. Crecimiento en centímetros cada 7 días (a). y ANOVA Crecimiento 
en centímetros cada 7 días (b). 

Figure 4. Growth (cm) at 63 days at different amounts of substratum. 
Figura 4. Crecimiento en centímetros a los 63 días a diferentes cantidades 
de sustrato. 
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Figure 5. Chlorophyll variation every 7 d (a) and ANOVA Chlorophyll 
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Figura 5. Variación de clorofila cada 7 d (a) y ANOVA Variación de clorofila 
cada 7 d (b) a diferentes cantidades de sustrato. 

In Figure 6, Tc presents a significant statistical difference 
with T2 and T3, but not with T1 which does not present a sig-
nificant statistical difference with the different treatments; it 
is observed that T2 presents a significant statistical difference 
with Tc but not with T1 and T3 in the same way that T3 has a 
significant statistical difference only with Tc, using the Tukey 
test.

Lead stress has been shown to reduce the photosynthe-
tic activity of sunflower plants due to reduce chlorophyll 
biosynthesis and leaf area, leading to reduced biomass 
(Usman Zulfiqar et al., 2019). Furthermore, it has been shown 
that the phytotoxicity of Pb causes oxidative stress in plants 
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and increases the synthesis and activity of the enzyme chlo-
rophyllase, resulting in a reduction in photosynthesis due 
to chlorophyll degradation. The structural changes induced 
by Pb in the photosynthetic apparatus and the decrease in 
chlorophyll biosynthesis cause a delay in carbon metabolism 
(Usman Zulfiqar et al., 2019), which would explain the reduc-
tion in chlorophyll in Bromelia karatas.

Determination of lead in leaf, root and substrate 
Figure 7 expresses the average of the results of Pb quantifica-
tion in leaf and root of the four treatments. For treatment Tc, 
the metal was not detected in the leaves. However, 0.0486 ± 
0.0102 mg Pb/Kg Substrate was detected in the root, despite 
the fact that the control was not exposed to Pb. This may be 
due to the fact that the substrate used contained traces of Pb 
and can be observed in Figure 8, which expresses the quanti-
fication of the five replicates of peat moss samples analyzed 
in ICP-OES; it was observed that the substrate actually con-
tained traces of Pb, an average of 0.1408 ± 0.0096 mg Pb/Kg 
Substrate was determined.

All the treatments exposed to Pb (T1, T2 and T3) presen-
ted an accumulation in tissues of Bromeliad karatas; for T1 in 
leaf 0.8967 ± 0.0332 mg of Pb/Kg was quantified and in root 
3.2664 ± 0.2244 mg of Pb/Kg, in T2 2.2501 ± 0.1468 mg of 
Pb/Kg was quantified in leaf and 5.5295 ± 0.1851 mg of Pb/
Kg in roots, and T3 contained in leaf 3.8377 ± 0.166 9 mg Pb/
Kg and in roots 8.1672 ± 0.1654 mg Pb/Kg. It is evident that 
the amount of absorption was also according to the exposed 
concentration, that is, the higher the concentration of Pb 
contained in the substrate, the higher the absorption of the 
heavy metal in the organism (Figure 8).

Tables 4 and 5 show a multiple range test for the accu-
mulation of Pb in leaves and roots respectively. Of the four 
treatments with a confidence level of 95 %, in the column of 
homogeneous groups the equal letters tell us that there is 
no significant statistical difference, while different letters if 
there is a significant statistical difference, therefore there are 
no homogeneous groups.
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Figure 7. Quantification of lead in leaf and root of the four treatments.
Figura 7. Cuantificación de plomo en hojas y raíces de los cuatro tratamientos.

Figure 8. Quantification of lead in the substrate (Peat moss).
Figura 8. Cuantificación de plomo en el sustrato (Peat moss).

Table 4. Multiple range tests for Pb accumulation in leaf.
Tabla 4. Pruebas de rango múltiple para acumulación de plomo en hojas.

Treatments Replicas Media Homogeneous 
groups

Tc = Control 5 0 a

T1 = 1000 mg Pb • Kg-1 substrate 5 0.8967 ± 0.0332 b

T2 = 2000 mg Pb • Kg-1 substrate 5 2.2501 ± 0.1468 c

T3= 3000 mg Pb • Kg-1 substrate 5 3.8377 ± 0.1669 d

Table 5. Multiple range tests for the accumulation of Pb in roots.
Tabla 5. Pruebas de rango múltiple para la acumulación de plomo en raíces.

Treatments Replicas Media Homogeneous 
groups

Tc = Control 5 0.0486 ± 0.0102 a

T1 = 1000 mg Pb • Kg-1 substrate 5 3.2664 ± 0.2244 b

T2= 2000 mg Pb • Kg-1 substrate 5 5.5295 ± 0.1851 c

T3= 3000 mg Pb • Kg-1 substrate 5 8.1672 ± 0.1654 d
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It is important to mention that the Bromelia karatas was 
able to tolerate concentrations of 1000, 2000 and 3000 mg 
Pb/Kg substrate. According to the Agency for Toxic Substan-
ces and Disease Registry (2007), the normal content of Pb 
in soil is 10 mg Pb/Kg (Mahecha-Pulido et al., 2015), a value 
exceeded in treatments 1, 2 and 3, however, the range of to-
xicity proposed by this agency is between 50 to 100 mg Pb/
Kg which are below the concentrations used in this research.

Regarding the morphometric variables previously 
analyzed, it is clear that Tc had the best response, mainly due 
to the fact that it was not in an environment contaminated 
with Pb followed by T1, which had the lowest concentration 
of Pb, T3, which had the highest concentration of Pb, was the 
one that showed the most negative responses, however, no 
leaf necrosis or cell death was observed in any of the plants 
of the four treatments due to contact with the heavy metal.

Gagan et al. (2017) examined the ability of Coronopus 
didymus belonging to the Cruciferae (Brassicaceae) family 
to accumulate Pb in their tissues. This plant was exposed 
to Pb concentrations of 100, 350, 1500 and 2500 mg Pb/
Kg supplied with Pb(NO3)2 for four and six weeks. After four 
weeks, he reported that in roots and plant shoots, 502 to 
1625 mg Pb/Kg of dry matter (DM) were quantified, while at 
six weeks the concentration of Pb in their tissues increased 
significantly. We can clearly appreciate that the accumulation 
by this plant was much higher than our object of study which 
presented an accumulation of Pb in its highest concentration 
of 8.1672 mg Pb/Kg DM in root and 3.8377 mg Pb/Kg DM in 
leaf being in contact with a concentration of 3000 mg Pb/
Kg substrate. The removal of Pb, using Bromelia karatas, is an 
example of phytoremediation, as experienced by Álvarez-
Bernal et al. (2007) using the legume Mimosa monancistra, to 
remove 87 %, polycyclic aromatic hydrocarbons (PAHs), in a 
time of 90 days.

Another plant of importance as a bioindicator are li-
chens, studied by Lijteroff et al. (2009), in the city of San Luis, 
Argentina, using the atmospheric purity index, to determine 
the gradualness of contamination levels, the almost absence 
total lichens in the city of San Luis, indicated the low quality 
of air in the urban space, but not in the city of Juana Koslay 
used as control.

Another species of epiphytic Bromeliad used as a bioin-
dicator of atmospheric contamination by metals such as cop-
per, zinc and vanadium, was Tillandsia usneoides L. reported 
by Figueiredo et al. (2004), being found at higher densities in 
industrial zones, in the city of Sao Paulo, Brazil.

Another plant of the Bromeliaceae family and of great 
importance as a biomonitor is Tillandsia recurvata, studied 
by Zambrano-García et al. (2009), in the Mezquital Valley, an 
agricultural and industrial region, analyzing contaminants 
such as polycyclic aromatic hydrocarbons (PAHs) and metals 
such as chromium, nickel, lead and vanadium.

The results indicated a high deposition of bioaccumula-
tive atmospheric pollutants in the Mezquital Valley, especia-
lly in the industrial area. Recommend Tillandsia recurvata, as 
a biomonitor, for comparisons within Mexico and between 

countries where it is distributed from the southern United 
States to Argentina.

Two epiphytic angiosperm species (Tillandsia caput-
medusae and Tillandsia bulbosa) for monitoring airborne 
polycyclic aromatic hydrocarbons (PAHs) from Florence, Italy 
were analyzed by Brighigna et al. (2002), with PAH data ob-
tained by GC/MS analysis of plant extracts, which indicated 
physical capture of aerial particles operated by trichomes 
with prominent bioaccumulation of PAH in tillages. SEM 
(scanning electron microscope) observations confirmed the 
role of trichomes. This work indicates that tillages are parti-
cularly useful and low-cost biomonitoring organisms within 
their range (all Latin American countries and the southern 
US).

Rodríguez et al. (2011) evaluated the air quality in agri-
cultural areas close to industrial emission sources (chemical, 
metallurgical and cement plants) through a biomonitoring 
study using the epiphytic species Tillandsia capillaris Ruíz and 
Pav. F. capillaris. The biomonitors were exposed to ambient 
air for four periods of 3 months each for one year (for the 
determination of physiological parameters), and for four pe-
riods of 6 months each for two years (for the determination 
of trace elements). The comparison between study areas 
indicates the highest values of the leaf damage index in the 
chemical industry sites, possibly due to the emission of oxi-
dizing pollutants. On the other hand, the concentrations of 
heavy metals and trace elements (V, Fe, Co, Cu, Br, Ni, Zn and 
Pb) were mainly associated with the metallurgical industries, 
although the chemical and cement industries were associa-
ted with Ni and Zn.

Schrecka et al. (2016) evaluated the reliability of Tilland-
sia sp. against passive filters to monitor the atmospheric de-
position of metal(loid)s in an area affected by anthropogenic 
activities. Three zones with different levels of contamination 
were monitored for five months in 2012. For the highly conta-
minated area, a linear increase in metal(loid)s accumulation 
in passive filters was found, while for transplanted Tillandsia 
capillaris the increase was almost linear for As, Cd, Hg and 
Sn, but not for Ag, Pb, Sb and Zn. For the moderately con-
taminated zone, the results showed that the exposure time 
was not sufficient for the concentrations of metal(loid)s to 
increase in the plants or in the filters. However, the natural 
specimens provided some indication of the levels of metal 
contamination. Metal particles were observed on the surface 
of the plant and also in the central disk below the tillandsia 
trichomes, suggesting that this is a possible pathway for 
metals to enter the plant. X-ray absorption spectroscopy 
demonstrated the chemical transformation of Pb and As, 
both in filters and in plants. For Pb, sorbed and/or cell wall 
Pb complexes were identified in plants. or there was no clear 
evidence of internalization and detoxification.

Tolerance to heavy metals by plants is limited both by 
cellular uptake and by the resistance of the metals once they 
have entered cells (Aman et al., 2018). The strategies used by 
plants to resist the toxic effects caused by heavy metals, are 
related to the following mechanisms:
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• Level of tolerance by the cell membrane towards 
metals.

• Reduced transport across the cell membrane.
• Active flow of metals from cells to the outside.
• Tolerance level of plant enzymes towards metals.
• Compartmentalization or accumulation of excess 

metals in subcellular organs such as vacuoles.
• Metal chelation by organic and/or inorganic ligands 

such as phytochelates.
• Precipitation of the metal to form compounds of 

low solubility.
Davies et al. (1991) mention that some known examples 

where these mechanisms are involved are in the accumula-
tion of zinc in the vacuoles, these are associated with chela-
tion by organic acids and their precipitation is linked to forms 
of zinc phytate. While the precipitation of cadmium and 
possibly copper and lead are bound to thiol-rich peptides 
such as phytochelatins.

CONCLUSIONS
This research has revealed the potential of Bromelia karatas 
as a bioindicator of Pb contamination in soil. The bromeliad 
response to Pb stress was the highest of all the stress indu-
cers examined; a higher concentration of these pollutants 
was quantified. In the presence of Pb, they were able to 
detect visible symptoms of leaf damage in their leaves after 
high doses of the contaminant. The low cost and the easy 
reproduction and portability of the bromeliad in comparison 
with other known bioindicators of the bromeliad family will 
make it a better option to be used as a bioindicator and/or 
biomonitor in the city of Tuxtla Gutiérrez, and in other future 
research to experiment with phytoremediation.
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