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Renal physiopathologic changes in diabetic Golden-Syrian 
hamsters (Mesocricetus auratus) fed with hypercaloric diet
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ABSTRACT:
Background: Diabetic nephropathy is the single major cause 
of end stage renal failure. The increase of visceral adipose 
tissue may lead to glomerular hypertrophy and chronic kid-
ney disease. Our objective was to determine renal changes 
in diabetic Golden-Syrian Hamster (Mesocricetus auratus) 
supplemented with a hypercaloric diet. Methods: One group 
of animals (n =10) was fed with a standard diet (SD), and the 
other group (n =10) was fed with a hypercaloric diet (HCD) 
for 1 month. Afterwards, both groups were treated with three 
doses of Streptozotocin. Hyperglycemia was determined 
throughout 73 d. The animal’s weight, blood and kidney 
tissues were obtained for analysis. Results: Diabetic animals 
fed with HCD diet manifested hyperglycemia (250 - 350 mg/
dL) with significant weight loss (40 g), and an important glo-
merular filtration rate decrement (0.491 mL/min). Regarding 
renal fibrosis, all animals showed an increase of glomerular, 
interstitial, and cortical extracellular matrix (36.3, 75.2 and 
70.7 %, respectively). Diabetic animals that were SD-fed 
showed only mild hyperglycemia and slight increase of glo-
merular, interstitial, and cortical extracellular matrix. A group 
of animals (n = 5), fed exclusively with HCD, was also included 
in the study. Conclusions: Our finding suggests that HCD 
feeding can accelerate the progression of chronic kidney 
disease in a diabetic condition.

Keywords: Diabetic, Nephropathy, Hypercaloric diet, 
Histopathologic, Fibrosis.

RESUMEN
Antecedentes: la nefropatía diabética es la principal causa 
de insuficiencia renal terminal. El aumento del tejido adiposo 
visceral puede provocar hipertrofia glomerular y enfermedad 
renal crónica. El objetivo es determinar los cambios renales 
en hámster sirio dorado (Mesocricetus auratus) diabéticos 
suplementados con una dieta hipercalórica. Métodos: Un 

grupo de animales (n =10) alimentado con dieta estándar 
(SD) y otro (n =10) con dieta hipercalórica (HCD) durante 1 
mes. Posteriormente, ambos grupos fueron tratados con tres 
dosis de Estreptozotocina. La hiperglucemia se determinó 
durante 73 días. Se obtuvo el peso de los animales, sangre 
y tejido renal. Resultados: Los animales diabéticos alimen-
tados con HCD manifestaron hiperglucemia (250-350 mg/
dL) con pérdida de peso significativa (40 g), disminución del 
filtrado glomerular (0.491 mL/min) y aumento de la matriz 
extracelular glomerular, intersticial y cortical (36.3, 75.2 y 70.7 
%, respectivamente). Los animales diabéticos que fueron 
alimentados con SD mostraron sólo una hiperglucemia leve 
y un ligero aumento de la matriz extracelular glomerular, 
intersticial y cortical. Un grupo de animales (n = 5) alimen-
tados exclusivamente con HCD fue incluido en el estudio. 
Conclusiones: Nuestro hallazgo sugiere que la alimentación 
con HCD puede acelerar la progresión de la enfermedad 
renal crónica en una condición diabética.
Palabras clave: Diabético, Nefropatía, Dieta hipercalórica, 
Histopatológico, Fibrosis.

INTRODUCTION
End-stage renal disease (ESRD) has become the most com-
mon cause of diabetes, also known as diabetic nephropathy 
(DN), in Western countries. It remains an important clinical 
problem with substantial medical comorbidity (Kalantar-
Zadeh et al., 2021). The high incidence and prevalence of 
ESRD has a rapid impact on global health, and represent 
a health care burden; it also disproportionately affects 
low- and middle-income countries (Thurlow et al., 2021). 
Demographics of ESRD diabetic patients indicate that the 
populations at highest risk are women, African American, 
Hispanic American, Asian American, Native American, and 
Pacific Islanders (Bleyer et al., 2008).
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The symptoms of DN are characterized by proteinuria, 
kidney hypertrophy, increased urinary albumin excretion, 
decreased kidney function, glomerulosclerosis, and accumu-
lation of extracellular matrix proteins in the tubular-intersti-
tial zone, which eventually results in ESRD (Uil et al., 2018). 
In particular, urinary albumin is associated with histopatho-
logic features such as progressive mesangial expansion. It is 
mainly due to the accumulation of type IV collagen, laminin, 
fibronectin, proteoglycans and other proteins, in the extra-
cellular matrix (ECM). Albuminuria progress ensues in glo-
merulosclerosis, arteriolar hyalinosis, and tubulointerstitial 
fibrosis development. These pathologic features correlate to 
the glomerular filtration rate (GFR) in humans with diabetes 
and kidney disease (Dizin et al., 2013; Breyer et al., 2005).

There are several factors that lead to diabetes mellitus. 
For instance, pharmacology, diet, or more recently, SARS-
CoV-2 (COVID-19) can trigger said disease. The use of antibio-
tics during childhood has been recently associated with pan-
creatic islet alterations, as well as modulating insulin secretion 
and the proliferation of β-cells. Likewise, antibiotic treatment 
in prenatal mice results in gut microbiome changes such as 
adiposity and hepatic metabolism of lipid and cholesterol 
(Cox et al., 2014; Li et al., 2009). Based on this information, the 
use of antibiotics can be related to diabetic conditions and 
kidney damage through increases in adiposity. Furthermore, 
a key factor in the development of diabetic renal injury is 
diet. Similar to humans, hamsters were hyper-responsive to 
increasing cholesterol levels (Zhang et al., 2009). Adding to 
this, carbohydrates in the diet can induce changes in both 
glucose and lipid metabolism. Hence, carbohydrate-rich 
diets may increase the risk of the development of chronic 
kidney disease (CKD) in non-diabetic subjects (Nam et al., 
2019; Elsisy et al., 2021). High-fat-high-carbohydrate diet 
induces signs of early and mild podocyte stress in animals, 
a characteristic of renal damage during metabolic syndrome 
and obesity (Seikrit et al., 2021).

MATERIAL AND METHODS
Experimental design
Twenty-five male Golden-Syrian Hamsters (Mesocricetus 
auratus), weighing approximately 140 g each, were used divi-
ded into 3 groups. All of the subjects were housed in a room 
with a 12/12-h light/dark cycle, and an ambient temperature 
between 22 °C and 25 °C under specific pathogen-free con-
ditions. The experiment took place in the Bioterium located 
at the Centro Universitario de Ciencias de la Salud (CUCS), from 
the Universidad de Guadalajara. The first group of hamsters 
(10 animals) was fed a standard diet (SD), consisting (as a 
percentage of total kcal) of 12% fat, 60% carbohydrates, 
and 28% protein. The second group (10 animals) was fed a 
hypercaloric diet (HCD), which consisted of the SD enriched 
with 1% cholesterol, 10% coconut oil, and 15% sugar. All 
animals (SD and HCD groups) were fed for one month. All of 
the subjects were previously induced to diabetes by an intra-
peritoneal injection with streptozotocin (STZ, Sigma-Aldrich) 
in sodium-citrate buffer (0.2M, pH 4.5), once a day for 3 con-

secutive days at a dose of 50, 40 and 40 mg/kg, respectively 
(0.3 mg/g approximately). Hamsters had free access to food, 
water and continued on their original diets for the duration 
of the study. A group HCD fed (without STZ-treatment) was 
included as control. After four months, the animals were 
anesthetized with Ketamine (65 mg/kg) and Xylazine (7 mg/
kg) in order to then be sacrificed for biological sample obtai-
ning (Figure 1). All experiments were conducted according to 
the internationally accepted principles for the care and use 
of laboratory animals, and the guidelines of the Animal Re-
search Reporting of in vivo Experiments (ARRIVE). It is worth 
mentioning that the researchers have experience handling 
laboratory animals and were trained through Internal Com-
mittee for the Care and Use of Laboratory Animals (CICUAL) 
courses and respecting the Official Standard of Technical 
Specifications for the Production, Care and Use of Laboratory 
Animals (NOM-062-ZOO-1999).

Urine and blood examination 
The blood glucose levels were monitored using the One-
touch Ultra glucose monitoring system (Lifescan Johnson 
& Johnson Company), and hamsters were considered to be 
diabetic when three consecutives blood glucose determina-
tions resulted in 200 mg/dL or above. To perform a glucose 
curve, glucose measurements were taken on days 3, 8, 16, 22, 
29, 49, 58 and 73 after the last STZ-administration.

Urine samples were collected twenty-four hours before 
death from each animal (in order to determine 24-h urinary 
volumes) by placing the hamsters in a previously cleaned 
metabolic cage. In addition, approximately 10 mL of blood 
were obtained from cardiac puncture. Uric acid, total pro-
teins, creatinine, albumin, urea and sodium (Na), potassium 
(K), and chlorine (Cl) electrolytes in blood and/or urine, were 
measured following standard methods in an instrument of 
analysis (Shyncron CX9). The GFR was determined following 
the equation: GFR = (uCr*uV)/(sCr) [13, 14].

Histopathologic analysis
Kidneys were quickly removed, set in 10 % phosphate-
buffered formalin solution and then embedded in paraffin. 
Kidneys were cut into semithin sections of 4 - 5 um. The 
sections were stained with hematoxylin and eosin (H&E) and 

Figura. 1. Diseño experimental.
Figure 1. Experimental design.
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Masson’s trichrome satin (HYCEL SA of CV, México). A single 
pathologist, unaware of the experimental protocol, analyzed 
all of the kidney’s slides using a light microscope.

The extent of renal injury was assessed by a histopatho-
logic analysis of the glomerular sclerosis and interstitial 
alterations (tubular and renal atrophy replaced by fibrous 
connective tissue), in representative renal tissue of each 
experimental group. The glomerulosclerosis, renal tubule 
damage (tubular atrophy), and interstitial fibrosis are cata-
loged in five groups, between 0 and 4. Glomerulosclerosis, 
renal tubule damage (tubular atrophy), and interstitial fibro-
sis are categorized into five groups, from 0 to 4. A score of 
0 indicates the absence of damage; a score of 1 represents 
less than 25 % of minor damage; a score of 2 corresponds to 
approximately 25 % to less than 50 % of damage, around the 
median. A score of 3 denotes about 50 % to 75 % of damage 
(approximately two-thirds of the area), and a score of 4 indi-
cates damage present throughout the entire area (> 75 %) 
(Vázquez-Méndez et al., 2020).

Fibrosis determination
Masson’s trichrome-stained renal slides from each animal 
were analyzed, in particular measuring the area, the diame-
ter and the fibrosis of glomeruli. The damage of renal tissue 
was evaluated in a computational system of image analysis, 
using an Olympus BX51 microscope equipped with a DP71 
camera, and Image-ProPlus 6.3 software from Media Cyber-
netics. From each group of animals (n = 4), 50 glomeruli were 
analyzed in 20 random fields (magnification 40X) of tissue 
sections.

Total collagen was tested by measuring the concentra-
tion of hydroxyproline as described by Rojkind et al. (1974). 
Briefly, renal tissue was hydrolyzed with 6N HCl at 110°C 
for 24 hours. Samples were incubated with a chloramine-T 
buffer for 10 m at room temperature. Ehrlich’s reagent was 
added, and the samples were again incubated for 45 minutes 
at 65 °C. Absorbance of each sample was measured at 560 
nm using a spectrophotometer (Thermo Scientific, Biomate 
3, USA). Collagen accumulation was expressed as percent of 
collagen in each experimental group.

Statistical analysis
The data are expressed as mean ± SD. Analysis through the 
t-Student test was used to compare the differences between 
groups. Values of P < 0.05 were considered significant.

RESULTS
Hyperglycemia 
Approximately 95 % of hamsters that receive HCD+STZ, ma-
nifested severe hyperglycemia (plasma glucose level of 250-
350 mg/dL throughout all of the experiment) as shown in fi-
gure 2A. Approximately 30 % of the animals, which exhibited 
significant weight loss (40 g) and dehydration, as shown in 
Figure 2B, were humanely euthanized by cervical dislocation, 
performed by trained personnel in accordance with ethical 
guidelines to prevent further suffering. Death was confirmed 

by the absence of reflexes and cardiac activity. The hamsters 
that received SD+STZ showed only mild hyperglycemia (140-
160 mg/dL). The undernourishment and dehydration were 
not as evident, but said animals still presented moderate 
weight loss (18 g) when compared to the former group. The 
remaining hamsters that were only HCD fed did not present 
hyperglycemia, undernourishment nor dehydration.

Biochemical analysis
The biochemical analysis demonstrated that the serum uric 
acid increased 28.7 % and 73 % respectively in both animal 
groups, the SD group, and the HCD that was treated with STZ. 
In urine, uric acid only decreased (61%) in diabetic animals 
induced by STZ that were fed with HCD. Urea in serum is 
normal in all 3 groups, but urine increased significantly (138 
%) in diabetic animals induced with STZ plus HCD (in STZ 
plus SD, the group increase was 27 %). Serum creatinine (Cr) 
concentrations increased slightly at the end of experiment 
in both animal groups that were treated with STZ. Moreover, 
uric Cr significantly decreased (78%) in the experimental 
group treated with STZ plus HCD, while in the STZ + SD 
group, it decreased 31%. All of this data indicates a tendency 
consistent with chronic and progressive renal failure. Total 
proteins experienced no changes (urine or serum) in the 3 
groups. Serum albumin decreased significantly (8%) in the 
animals which received STZ + HCD and increased (31%) in 
urine (Table 1). In the electrolytes analysis related to urine, 

Figura 2. Determinaciones de glucosa y peso.
Figure 2. Glucose and weight determinations. A) shows a constant eleva-
tion of glucose concentration (mg/dL) observed in HCD-STZ group (line 
with red-box). B) an important decrement in weight (g) of animals HCD fed 
plus STZ treated. The results are presented as means ± SD, with p<0.05 indi-
cating statistical significance.
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sodium decreased in both STZ-treated groups, while in serum 
no significant changes were present. In serum, potassium 
showed an increase of 20 % exclusively in the animals that 
received STZ + SD. While in urine, the potassium decreased 
significantly to 66 % in this same group (the other group trea-
ted with STZ decreased as well, but in less proportion - 21 %). 
In serum, chlorine increased in both STZ-treated groups to 
10 %. Nevertheless, in urine, these same groups significantly 
decreased the concentration to 50 % for STZ + SD and 100 % 
for STZ+HCD.

Renal function
GFR was calculated with respect to renal creatinine clearan-
ce, in 24-h urine collection (Figure 3A). A single measurement 
of serum creatinine was done, as indicated by the Cockcroft-
Gault equation. As shown in Figure 3B, the GFR in HCD and 
in SD plus STZ groups was similar (0.671 and 0.672 mL/min, 
respectively), but in diabetic animals, HCD fed, the GFR de-
creased significatively, around 30 % (0.491 mL/min).

Histopathologic analysis
The glomerular tissue damage was determined to traverse 
histomorphometric changes of glomeruli, characterized by 
ECM accumulation in the intra- and extra-glomerular space. 
This alters the circular shape, whose evolution can progress 
to functional atrophies or Kimmelstiel-Wilson lesion (Islas An-
drade and Revilla Monsalve, 2005), and in addition, presents 
extravasations even in the Bowman’s space. The interstitial 
matrix was determined by the presence or absence of vacuo-
lization–glycogen drops (Armanni-Ebstein changes), which 
have been related to hyper-glucose (Islas Andrade and Revi-
lla Monsalve, 2005). The animals of the HCD group presented 
enlargement of the capillary wall, mesangial-intercellular 
expansion, decrement of the space in the Bowman’s capsule, 
tubule interstitial vacuolization, loss of luminal area, initial 

Tabla 1. Análisis bioquímico en cada grupo experimental.
Table 1. Biochemical analysis in each experimental group. Table 1A show concentration (mg/dL) of uric acid, total proteins, albumin, urea and creatinine 
(urine and serum) in each experimental group. Table B, show the Na, K and Cl electrolytes levels (mM/L) in serum and urine in each treatment. The results are 
presented as means ± standard deviation (SD). Differences are considered statistically significant when p < 0.05. Statistically significant results are marked 
with an asterisk (*).

Table A

Uric Acid (mg/dL) Total Proteins (g/dL) Albumin (mg/dL) Urea (mg/dL) Creatinine (mg/dL)

Group Serum Urine Serum Urine Serum Urine Serum Urine Serum Urine

HCD 1.5 ± 0.61* 10.8±2.42* 5.1 ± 0.59 0.1 ± 0.08 2.2 ± 0.28 156.5 ± 106.4 32.7 ± 3.2 261.2 ± 111 0.45 ± 0.06 143.33 ± 28.8

SD + STZ 1.9 ± 0.54 11.2±4.42* 5.33 ± 0.33 0.1 ± 0.14 2.3 ± 0.10* 152.2 ± 33.19 35 ± 1.2 333.7 ± 169 0.46 ± 0.13 103.26 ± 46.4

HCD + STZ 2.6 ± 0.71* 4.2 ± 4.8* 5.2 ± 0.57 0.1 ± 0.10 2.1 ± 0.07* 205.6 ± 60.6 35.5 ± 4.9 621 ± 313.6* 0.61 ± 0.36 32.87 ± 22.2*

Table B

Group Na (mM/L) K (mM/L) Cl (mM/L)

Serum Urine Serum Urine Serum Urine

HCD 132.5 ± 14.7 137.8 ± 50.6 6.4 ± 0.5* 241.6 ± 9.9* 91.8 ± 9.6 114.1 ± 83.9

SD + STZ 145.4 ± 0.94 107 ± 60.6 6.2 ± 0.4* 190.7 ± 56.7* 101.2 ± 1.2 58.24 ± 46.5

HCD + STZ 140.4 ± 7.2 107.5 ± 47.2 7.7 ± 0.6* 83.2 ± 39.7* 100.9 ± 2.8* 0 ± 0

changes in the presence of ECM proteins, and an increment 
of inter-tubular space, as shown in Table 2. Animals of the 
SD-STZ group showed similar characteristics, though more 
prominent, alongside glomerular atrophy. Notably, animals 
that received SD plus STZ demonstrated an exacerbation of 
significantly aggressive features and atrophy with extrusion 
into Bowman’s space. Furthermore, significant evidence of 
glomerulosclerosis, tubular atrophy, and interstitial fibrosis 
was observed after feeding animals with HCD-STZ, as shown 
in Table 3. At the end of the experiments, the score of glome-
rulosclerosis, tubular atrophy, and interstitial fibrosis was 1 in 

Figura 3. Análisis de función renal.
Figure 3. Renal function analysis. A) represent creatinine depuration in 
HCD, standard diet plus streptozotocin (SD-STZ) and hypercaloric diet plus 
streptozotocin (HCD-STZ) animals; B) indicate the glomerular filtration rate 
in each experimental group. The results are represented as mean ± SD, in 
mL/min.
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Tabla 2. Análisis histopatológico.
Table 2. Histopathological evaluation. The renal characteristics 
in each experimental group are indicated by the √ presence and 
the damage intensity it represented by its size.

the HCD group; glomerulosclerosis (2), tubular atrophy, and 
interstitial fibrosis (1) in the SD group. This suggests that, by 
the end of the experiments, renal scarring was moderate to 
severe in both groups. Nevertheless, in the HCD-STZ group, 
glomerulosclerosis and interstitial fibrosis (3 and 2 scores, 
respectively) were exacerbated.

Fibrosis determinations
Renal fibrosis evaluated by a morphometric analysis and 
hydroxyproline biochemical determinations, demonstrated a 
significant increase only in the animals that receive HCD+STZ, 
as much in glomeruli, interstice, and crust (36.3, 75.2 and 70.7 
%, respectively) (Figure 4 E, F). The SD+STZ group (Figure 4 C, 
D) presented a slight increase of glomerular, interstitial, and 
cortical extracellular matrix (1.7, 12.5 and 11.2 %, respectively) 
with respect to HCD group (Figure 4 A, B). The progression of 
collagen deposition in kidney tissue was also confirmed by 
the measurement of tissue hydroxyproline content, that pro-
gressively increased in the HCD+STZ group. Results obtained 
with histological analysis and hydroxyproline determinations 
showed structural changes in renal tissue during the develo-
pment of kidney fibrosis.

Tabla 3. Indice de daño renal.
Table 3. Kidney damage rate. The group of HCD-STZ animals displayed an 
exacerbated damage assessed by increments of glomerular sclerosis, inter-
stitial fibrosis, and tubular atrophy. A total of 4 cortical fields per animal were 
analyzed.

Figura. 4. Determinación de fibrosis.
Figure 4. Fibrosis determination. Representative images of renal tissue 
Masson trichrome stained in each experimental group, where A and B cor-
respond to HCD, C and D for SD-STZ and E and F to HCD-STZ animal groups. 
The panels of graphics indicate fibrosis determination (µm2) by computa-
tional morphometry in glomerular, interstitial, and cortical regions repre-
sented as mean ± SD in each group of animals, similarly, the percentage of 
collagen proteins (hydroxyproline) is shown.
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DISCUSSION
End-stage renal disease is one of the most prevalent and irre-
versible complications of hypertension, diabetes, and inhe-
rent renal diseases; it affects a significant number of people 
worldwide (Al-Rajhi and Al Salmi, 2020). The incidence of 
ESRD is increasing substantially, which, as a result, means the 
impact of said condition and its treatment has widespread 
consequences for healthcare services, individuals, and so-
ciety (Al-Rajhi and Al Salmi, 2020). ESRD causes significant 
biochemical abnormalities leading to symptom groups 
such as the uremic syndrome, which negatively impacts an 
individual’s quality of life. In this renal disease, the progressi-
ve accumulation of ECM in the glomeruli (glomerulosclerosis) 
and between tubules (tubule-interstitial fibrosis) are the final 
manifestations of chronic kidney disease (Cho, 2010).

Streptozotocin (STZ), an antibiotic derived from Strep-
tomyces achromogenes, has significant antimicrobial action 
for a wide spectrum of organisms. Furthermore, toxicology 
studies in dogs and rhesus monkeys demonstrated that STZ 
had a potent diabetogenic effect (Mariee et al., 2009). On the 
other hand, rodents have been a preferred model for the stu-
dy of diabetic pathophysiology because of their similarities 
to humans. In this regard, hamsters exhibit symptoms of dia-
betes that are similar to those in humans (Sweta et al., 2018).

In this experimental design, it was demonstrated that 
the administration of HCD+STZ in Golden Sirius Hamster 
(Mesocricetus auratus) increases the blood-glucose concen-
tration when compared to animals fed with a normal diet 
plus STZ administration. However, Islam et al. (2009) stated 
that long-term high fat, either alone or in combination with 
STZ, induces constant hyperglycemia. Tesch and Allen (2007) 
proposed that the severity of injury is dependent on the 
genetic background of the species. The HCD+STZ group 
also had polyuria and loss of weight, probably due to the 
hydroelectric imbalance of organisms.

The excess of fluid dissolved substances can lead to an 
increase in the amount of urine produced by the kidneys. It 
also depends on the filtering capacity of the kidney; when 
there are renal tubules, it may be unable to reabsorb the 
filtered blood, which determines an increase in the amount 
of urine produced. Other studies reported factors that have 
been associated with renal disease, such as serum uric acid 
(Hovind et al., 2009). In this particular article, an increment in 
serum uric acid and diminution in urine is reported. Never-
theless, the role of uric acid in the development of diabetic 
nephropathy is not yet completely understood. More studies 
in rats indicated that the main injuries from uric acid increase 
are glomerulosclerosis, interstitial fibrosis, and arteriolar di-
sease. The mechanism of the lesion appears to be related to 
the development of preglomerular arteriolar disease, which 
impairs the renal autoregulatory response and thereby cau-
ses glomerular hypertension (Feig et al., 2008). More recently, 
epidemiologic studies suggest that elevated uric acid levels 
are an independent predictor of the development of microal-
buminuria (Feig et al., 2008; Lee et al., 2006). Also, increased 
blood urea nitrogen and creatinine in diabetic rats indicate 

progressive renal damage, which is taken as an index of alte-
red GFR in diabetic nephropathy (Breyer et al., 2005; Kuhad 
et al., 2009). In the findings section of this article, the non-
treated animals did not show an increase in the serum levels 
of urea nitrogen, in comparison with the STZ-plus treated 
animal where the urea significantly elevated.

Proteinuria is an indicator of glomerular damage and 
may be used as a measure for diabetic glomerulopathy. In 
diabetic nephropathy, it is strongly associated with patho-
logical changes of diffusion and, less commonly, with the 
nodular form of diabetic glomerulosclerosis. The results 
presented in this article did not show changes in the levels 
of total proteins, and proteinuria is also viewed as a hemody-
namic promoter of the progression of the disease in diabetic 
nephropathy (Williams, 2005). Urine albumin secretion is 
considered to be one of the most sensitive markers of renal 
injury. Results indicate a significant increase in albuminuria 
and a decrease in serum albumin in HCD+STZ. Reports by 
Lassila et al. (2004) also show that STZ-treated mice (C57BL/6) 
hyperlipidemic ApoE deficient, present an increase in the 
secretion of urine albumin (Lassila et al., 2004).

Oh et al. (2007) suggest that these hemodynamic chan-
ges are related to altered sodium balance, which might be 
associated with hemodynamic changes, responsible for the 
progression of diabetic nephropathy. This research found de-
creased urinary sodium in both groups with treatment plus 
diet, and not diet. Mapanga et al. (2009) reported that rats 
with STZ-induced diabetic nephropathy exhibited weekly de-
creases in urinary sodium excretion. As such, it is suggested 
that the increase of GFR possibly expanded the filtered load 
of sodium in the tubular filtrate, hence facilitating urinary 
sodium excretion. Furthermore, the elevated GFR observed 
in diabetic patients is the result of an increase in glomerular 
capillary surface area, plus an additional mechanism altering 
one or more of the other determinants of GFR. Currently, said 
other mechanism is considered to be a reduced tubuloglo-
merular feedback signal (Mapanga et al., 2009).

The diabetic kidney displays a primary increase in pro-
ximal tubular fluid and an electrolyte reabsorption, thereby 
presenting a reduced concentration of Na+, K+ and Cl− to the 
macula densa cells of the juxtaglomerular apparatus. The 
resultant decreased uptake of these ions by these cells elicits 
an increase in the GFR of that nephron via a reduction in 
vascular tone, predominantly of the afferent arteriole (Singer, 
2007). Similarly, the K+ and Cl- concentrations decreased in 
STZ-treated groups, but they were lower in the animals that 
received STZ plus the special diet. In serum, a significant 
increment of Cl- was observed in both STZ-treated groups, 
and K+ only increased in the STZ-treated plus high-fat diet fed 
group.

Renal function was assessed by measuring plasma 
and urine levels of creatinine. It has also been observed 
that increased serum creatinine in diabetic rats indicates 
progressive renal damage (Breyer et al., 2005), which is taken 
as an index of altered GFR in diabetic nephropathy. In this 
experiment, we reported a significant decrease of urinary 



Volume XXVI

Gálvez-Gastélum et al: Renal physiopathologic changes in diabetic Golden-Syrian / Biotecnia 26:e2420, 2024

7

creatinine but a moderate elevation of serum creatinine in 
the HCD-STZ animals. The same animal group showed a sig-
nificant decrement of creatinine depuration and alteration 
in the glomerular filtration rate. Popov et al. (2003) reported 
that hamsters with HCD presented augmented creatinine 
concentrations related to disturbances of the renal function. 
Said concentrations progress to nodular glomerulosclerosis 
and nephropathy after 20 weeks of diet (Popov et al., 2003). 
Yu et al. (2022) indicated that a high-fat diet in mice impairs 
renal function and increases proteinuria and proinflamma-
tory cytokines by Wnt/β-catenin signaling induction. Simi-
larly, Laurentius et al. (2019) stated that obesity induced by a 
high-fat diet in aging Long-Evans rats causes damage in renal 
structures due to an inflammatory microenvironment. Seikrit 
et al. (2021) reported that a hypercaloric diet induces podo-
cyte damage and microinflammation in aged, non-diabetic 
rats for five months. Sugyeong et al. similarly observed that a 
high-fat diet increased protease-activating receptor 2 (PAR2) 
levels in the renal tubule epithelial region with increased 
inflammatory responses, oxidative stress, and fibrosis (Ha et 
al., 2022). However, Elsisy et al. (2021) suggested that a high-
fructose diet induces more severe kidney damage in rats du-
ring 4 weeks than a high-fat diet within the same timeframe.

The results of this article showed that the histopatho-
logical features of capillary wall thickening, intercellular-
mesangial expansion, decreased Bowman’s space, increased 
ECM proteins, and glomerular atrophy with extrusion into 
Bowman’s space are more aggressive in the HCD+STZ group. 
Similar characteristics were reported by Popov et al. (2023) 
in Golden Syrian hamsters with a high-fat diet for 20 weeks. 
Some of the main attributes are that the glomerular basal 
membrane (GBM) was modified, and the thickness of the 
GBM gradually increased. In addition, after 4 weeks of a high-
fat diet, the thickened GBM developed focal enlargements 
and nodules that apparently compress and diminish the vas-
cular capillary lumen. After 20 weeks, the hamsters with the 
high-fat diet showed that the mesangial area had increased 
(Popov et al., 2003).

The pathogenesis of chronic renal disease is charac-
terized by a progressive decline of renal function and con-
tinuous accumulation of ECM. This in turn leads to diffuse 
fibrosis, probably by undergoing endothelial-myofibroblast 
transition in endothelial cells (Li et al., 2009; Efstratiadis et al., 
2009). Renal scarring was assessed and blinded for this study. 
It is reported that HCD+STZ fed animals were cataloged in 
> 50 % of glomerular sclerosis, and between 20 % - 50 % of 
interstitial fibrosis.

Finally, it is demonstrated that all animals with HCD+STZ 
show an increment of glomerular, interstitial, and cortical 
ECM (Figure 5), when compared to the control group of only 
HCD. To corroborate the increment of renal fibrosis, a slight 
increase of collagen (hydroxyproline) was found only in the 
HCD+STZ group. In the pathogenesis of tubulointerstitial 
fibrosis, many cytokines and chemokines participated, par-
ticularly in the activation of the myofibroblast. One of said 
factors is the transforming growth factor-β1 (TGF-β1) and 

platelet-derived growth factor (PDGF) (Lane et al., 2002). 
The second part of our investigation seeks to analyze the 
physiopathology of the experimental model of diabetic ne-
phropathy at the molecular level.

CONCLUSIONS
This study conclusively demonstrates that the administration 
of STZ in Golden Syrian hamsters, combined with HCD, in-
duces a significantly more severe metabolic and renal profile 
compared to a SD. The HCD+STZ group not only exhibited 
severe hyperglycemia but also experienced higher mortality, 
pronounced elevation of uric acid, and renal deterioration 
evidenced by reduced glomerular filtration rate and marked 
histological changes such as glomerulosclerosis and intersti-
tial fibrosis. These findings suggest that the combination of 
an HCD in diabetes exacerbates metabolic and renal compli-
cations, highlighting the critical importance of dietary factors 
in the progression of renal disease in diabetic models. This 
research provides significant evidence on the impact of diet 
in the development and worsening of diabetes-associated 
pathologies, which could have important implications for the 
clinical management of the disease in humans.
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