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ABSTRACT
Bacillus cereus is responsible for food poisoning worldwide, 
thus, the characterization of strains isolated from food, in this 
case rice, is essential. Therefore, the objective of this study 
was to identify the toxigenic profile, lytic enzymes, antimi-
crobial resistance, and biofilm production of B. cereus strains 
isolated from rice. The genetic profile of toxins and biofilm-
related genes of strains was determined by endpoint PCR. 
Biofilm was visualized by safranin staining. Evaluation of lytic 
enzymes was determined in culture media. Psychrophiles 
were monitored by the growth of the strains at refrigeration 
temperature. The GTG5 technique was used to determine the 
genetic diversity of the strains. Antimicrobial resistance of the 
strains was validated by minimum inhibitory concentration. 
The strains of B. cereus s.l. from rice contained genes for ente-
rotoxins and genes associated with biofilm production. The 
strains did not have the cereulide gene. The strain isolated 
from fried rice was the only one that contained the Hbl toxin 
gene and the Eps2 operon. The same strain was the only one 
that did not produce biofilm, had intermediate sensitivity 
to erythromycin, was amylase positive, had high lecithinase 
activity, and grew at refrigeration temperature.
Keywords: Bacillus cereus; rice; virulence.

RESUMEN
Bacillus cereus es responsable de intoxicaciones alimentarias 
a nivel mundial, siendo importante la caracterización de ce-
pas aisladas de alimentos, en este caso, de arroz. Por lo tanto, 
el objetivo de este estudio fue identificar el perfil toxigénico, 
enzimas líticas, resistencia antimicrobiana y producción de 
biopelículas en cepas de B. cereus aisladas de arroz. El perfil 
genético de toxinas y los relacionados a biopelículas fue 
determinado por PCR en punto final. La biopelícula fue vi-
sualizada por tinción con safranina. La evaluación de enzimas 
líticas fue determinada en medios de cultivo. Los psicrófilos 
fueron monitoreados por crecimiento de cepas en tempe-
ratura de refrigeración. La técnica de GTG5 fue usada para 
determinar la diversidad genética de las cepas. La resistencia 

a antimicrobianos fue validada por concentración mínima 
inhibitoria. Las cepas de B. cereus s.l. de arroz contenían los 
genes de enteroxinas y genes asociados a producción de 
biopelículas. Las cepas no contienen el gen de la cereulida. La 
cepa aislada de arroz frito es la única que contiene el gen de 
la toxina Hbl y el operón eps2. Esta misma cepa no produce 
biopelícula, tiene sensibilidad intermedia a eritromicina, es 
amilasa positiva, tiene alta actividad lecitinolítica y crece en 
temperaturas de refrigeración.
Palabras clave: Bacillus cereus; arroz; virulencia.

INTRODUCTION
The Bacillus cereus group, or B. cereus sensu lato (B. cereus s.l.), 
are Gram-positive bacteria with a low GC content that belong 
to the Firmicutes phylum. It is a group that includes bacillus-
shaped, spore-forming, aerobic to facultative anaerobic 
bacteria, with peritrichous flagella involved in locomotion, 
including at least eight highly related species: B. anthracis, 
B. cereus, B. thuringiensis, B. mycoides, B. pseudomycoides, B. 
weihenstephanensis, B. cytotoxicus and B. toyonensis (Enosi 
Tuipulotu et al., 2021; Liu et al., 2015).

The species of the B. cereus group are endemic soil 
bacteria that occupy diverse ecological habitats due to the 
formation of endospores resistant to heat, UV radiation, 
acids, and desiccation, for which the bacteria can persist in a 
dormant state (Ehling-Schulz et al., 2019). In addition to spo-
re production, B. cereus resists adverse environmental condi-
tions due to the formation of biofilms on abiotic surfaces and 
living tissues (Duport et al., 2016). In this sense, it has been 
reported that B. cereus can produce biofilms in pipes and 
food storage systems, favoring the systematic contamination 
of food products (Majed et al., 2016; Shemesh and Ostrov, 
2020; Wijman et al., 2007).

In addition to soil, species have been isolated from fresh 
and frozen foods, invertebrates, and plants (Ehling-Schulz 
et al., 2019). In this sense, it is estimated that B. cereus is 
responsible for 1.4%-12% of all food poisonings worldwide 
(Grutsch et al., 2018). B. cereus is responsible for two types 
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of gastrointestinal syndromes. The emetic type is mainly 
characterized by nausea and emesis, which appears one hour 
after consumption of contaminated food and is clinically 
indistinguishable from Staphylococcus aureus enterotoxin 
poisoning (Stenfors Arnesen et al., 2008). The diarrheal type 
of food poisoning is also associated with various foods. The 
disease mainly manifests in diarrhea and abdominal cramps, 
like Clostridium perfringes food poisoning, and occurs after 
approximately 8 to 16 h after consumption (Jessberger et al., 
2020; Stenfors Arnesen et al., 2008).

The diarrhoeal syndrome is associated with different 
enterotoxins produced after germination of spores and 
growth of vegetative cells, ingested through contaminated 
food and activated in the small intestine (Schoeni and Wong, 
2005, Stenfors Arnesen et al., 2008). B. cereus produces three 
pore-forming enterotoxins: Nhe (a three-component non-
haemolytic enterotoxin), Hbl (a three-component haemolytic 
enterotoxin) and, the single-component cytotoxin CytK. The 
emetic syndrome results from poisoning caused by a toxin 
called cereulide, which is found in food (Schoeni and Wong, 
2005). Cereulide is a dodecapeptide composed of alpha 
amino and alpha hydroxy acids, structurally related to the 
potassium ionophore valinomycin. Cereulide is produced by 
a peptide synthetase called ces, which represents a new type 
of non-ribosomal peptide synthetase (NRPS) (Ehling-Schulz 
et al., 2004).

Epidemiological data show that rice, pasta, cakes, and 
noodles are associated with emetic syndrome, whereas 
vegetables, meat, and dairy products have been associated 
with diarrheal syndrome (Enosi Tuipulotu et al., 2021). In 
Mexico, there is currently no health legislation related to the 
presence of B. cereus in foods, but the presence of B. cereus 
in vegetables (Castulo-Arcos et al., 2022; Flores-Urbán et al., 
2014), ice cream (Adame-Gomez et al., 2019), artisanal chee-
ses and eggs (Adame-Gómez et al., 2020b; Cruz-Facundo et 
al., 2022; 2023) has been reported. Rice is a product consu-
med in Mexico in different preparations, including fried rice 
and milk dessert with rice. In a preliminary study, B. cereus 
was isolated from 5% of rice samples, with a higher frequency 
in rice desserts (8.5%). However, not only the isolation of the 
microorganism is essential, but also the molecular characte-
rization of different virulence factors, are needed. Therefore, 
the objective of this study is to identify the toxigenic profile, 
lytic enzymes, antimicrobial resistance, and biofilm produc-
tion of B. cereus strains isolated from rice.

MATERIAL AND METHODS
Bacterial strains
In this study, six strains previously characterized as B. cereus 
s.l. (Cano- Ponce and Ramirez- Peralta, 2023) are included, 
based on the isolation and presumptive identification in MYP 
agar and the amplification of the gyrB gene as a confirmatory 
test (Wei et al., 2018). The strains are named according to uni-
que laboratory strain codes such as B629, B630, B631, B632, 
B633, B634. The B629 strain was isolated from fried rice and 
the rest of the strains were from rice-based desserts.

Bacterial DNA extraction
For DNA extraction, 1 mL of bacterial liquid culture was 
centrifuged for 10 minutes at 10,000 rpm. The pellet was re-
suspended in 200 μL of lysis solution (10 mM Tris-HCl, 1 mM 
EDTA pH 8.0, and 1 mg/mL lysozyme) and incubated for 30 
minutes at 37°C. Afterwards, 250 μL of phenol-chloroform-
isoamyl alcohol (ratio 25:24:1) were added and homogenized 
by inversion. Then, it was centrifuged at 10,000 rpm for 5 
min, 200 μL of the aqueous phase was recovered to avoid 
contamination with organic phase (chloroform/ phenol 
phase) and mixed with 1 mL of cold absolute ethanol. Finally, 
the solution was centrifuged at 10,000 rpm for 10 min. The 
supernatant was completely removed, and the DNA was 
resuspended in 20 μL of TE buffer (Cruz-Facundo et al., 2023).

Enterotoxigenic profile
Detection of the B. cereus toxin genes was performed by 
PCR using conserved regions of the nheABC (NA2-F AAGCI-
GCTCTTCGIATTC, NB1-R ITIGTTGAAATAAGCTGTGG), hblACD 
(HD2-F GTAAATTAIGATGAICAATTTC, HA4-R AGAATAGGCATT-
CATAGATT) operons, which encode non-hemolytic ente-
rotoxins and hemolysin BL, respectively; and the genes ces 
(CesF1- GGTGACACATTATCATATAAGGTG, CesR2- GTAAGCGA-
ACCTGTCTG-TAACAACA) and cytK (P1-cytK CAAAACTCATC-
TATGCAATTATGCAT, P3-cytK ACCAGTTGTATTAA-TAACGG-
CAATC), which encode for emetic toxin and cytotoxin, 
respectively (Ehling-Schulz et al., 2006; Ołtuszak-Walczak et 
al., 2006). For each PCR, the mixture contained the following: 
25 μL of REDTaq DNA Polymerase Ready Mix (Sigma-Aldrich, 
St. Louis, MO, USA), 11 μL of sterile MiliQ water, 10 to 20 ng 
of genomic DNA, and 0.02 μM of each oligonucleotide. The 
conditions for the nhe, hbl, and ces genes were 1 cycle at 94°C 
for 5 minutes, 25 cycles at 94°C for 30s, 49°C for 1 minute, 
72°C for 1 minute, and one cycle at 72°C for 5 minutes. For 
the cytK gene it was one cycle at 94°C for 2 minutes, 35 
cycles at 94°C for 30 seconds, 52°C for 1 minute, 72°C for 30 
seconds, and one cycle at 72°C for 10 minutes. The B. cereus 
strains used as positive controls, were ATCC14579 for hbl and 
cytK genes, and BC133 for the nhe gene. The latter strain was 
previously isolated and characterized in the laboratory from 
dairy formula (Adame-Gómez et al., 2020a).

Determination of B. cereus biofilms
Biofilm determination was performed in glass and polyethyle-
ne tubes, as well as 96-well polystyrene plates. The tubes and 
plates were filled with 200 μL of Brain Heart Infusion (BHI) 
broth supplemented with 1% dextrose and inoculated with 
20 μL of 24 h liquid cultures of the strains (6x106 UFC/mL). 
The tubes and plate were incubated at 37°C for 48 h. Later, 
the cultures were removed from the tubes and plates, which 
were then washed three times with PBS 1X (137 mM NaCl, 2.7 
mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.2). Biofilms 
were stained with 200 μL of safranin for 30 min. Then, tubes 
and plate were washed three times with PBS 1X and distai-
ned with absolute alcohol for 10 minutes. The absorbance of 
the alcohol from safranin staining was determined at 550 nm 
(Adame-Gómez et al., 2020a).
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Determination of genes involved in B. cereus biofilm 
formation
The genes involved in biofilm formation were amplified by 
endpoint PCR using the following oligonucleotides for each 
of the genes of interest: sipW (sipW- F AGATAATTAGCAACGC-
GATCTC, sipW-R AGAAATAGCGGAATAACCAAGC), tasA (tasA-
F AGCAGCTTTAGTTGGTGGAG, tasA- R GTAACTTATCGCCTT-
GGAATTG), calY (calY-F AGGTATCGGGAGTTCATCAG, calY R 
CAGCTTCTTGGTTGGCATTG), and eps2 (eps2-F TGTTTTGA-
GCGGATTTGTTTTGT, eps2-R GATTGCTCTGCCAATGTCTTT) 
(Caro-Astorga et al., 2014; 2020). For each PCR, the mixture 
contained the following: 25 μL of REDTaq DNA Polymerase 
Ready Mix (Sigma-Aldrich, St. Louis, MO, USA), 11 μL of sterile 
MiliQ water, 10 to 20 ng of genomic DNA, and 0.02 μM of each 
oligonucleotide. The conditions for the sipW, tasA, and calY 
genes were 1 cycle at 94°C for 5 minutes, 35 cycles at 94°C for 
30 seconds, 61°C for 45 seconds, 72°C for 45 seconds, and a 
cycle of 72°C for 5 minutes. For the eps2 operon, it was one 
cycle at 94°C for 2 minutes, 35 cycles at 94°C for 30 seconds, 
52°C for 30 seconds, 72°C for 90 seconds, and one cycle at 
72°C for 10 minutes. The B. cereus ATCC14579 strain was used 
as a positive control (Cruz-Facundo et al., 2023).

Determination of B. cereus extracellular enzymes and 
growth at low temperatures
The determination of extracellular enzymes was carried out 
by inoculating 2 μL of a 24-h culture on different agar plates: 
BHI with 1% starch agar, 5% casein agar, 5% gelose blood 
agar, and 10% MYP agar of egg yolk emulsion. The agar pla-
tes were incubated at 30°C for 24 h, and the 5% blood agar 
plates were incubated at 10°C for 10 days. After incubation, 
30 μL of lugol were added to demonstrate amylolytic activity 
on 1% starch agar. For proteolytic and lecitinolytic activity, 
the presence or absence of hydrolysis zones was observed in 
5% casein agar and 10% egg yolk emulsion agar (Claus and 
Berkeley, 1986). To estimate the lecithinase activity, the ratio 
was estimated by zone diameter of colony, and zone dia-
meter of halo. In the case of psychotropic capacity, growth/
non-growth at 10°C of the strains was monitored for ten days 
by visual observation, considering the day on which growth 
was observed as the detection time (DT) (Berthold-Pluta et 
al., 2019; Cruz-Facundo et al., 2023).

Genetic diversity of B. cereus
The phylogenetic relationship between the strains of the B. 
cereus group was determined using the repetitive palindro-
mic element PCR technique (rep-PCR) using GTG5 primers 
(GTGGTGGTGGTGGTG) with the following reaction condi-
tions: initial denaturation at 95°C for 2 minutes, 30 cycles of 
94°C for 30 seconds, 40°C for 2 minutes, 72°C for 4 minutes 
and a final extension of 72°C for 5 minutes (De Jonghe et al., 
2008). Electrophoresis was performed in 2% agarose gels at 
90V for 120 minutes. The gels were stained with Midori Green 
(Nippon Genetics, Germany) and visualized with LED light.

The DICE similarity coefficient was calculated to establish 
the genetic distances of the profiles. The genetic distance 

matrix was analyzed by the UPGMA method. A dendrogram 
was made with the analyzed data using NTSYS 2.0 software.

Antimicrobial resistance in B. cereus
Broth microdilution testing was performed for each strain 
using Mueller-Hinton, broth in accordance with CLSI gui-
deline M45: ED3 (Hindler and Richter, 2016) . A total of ten 
antibiotics (Oxoid, UK) were tested: ampicillin (0.12 - 16 μg/
mL), ciprofloxacin (0.5 - 4 μg/mL), clindamycin (0.2 - 4 μg/
mL), gentamicin (2 -500 μg/mL), tetracycline (2-16 μg/mL), 
trimethoprim (0.5 - 9.5 μg/mL), kanamycin (2-500 μg/mL), 
vancomycin (1-64 μg/mL), erythromycin (0.5 - 8 μg/mL) and 
chloramphenicol (0.5 - 32 μg/mL). The B. cereus s.l. inoculum 
was prepared from a 24 h culture by first adjusting the cultu-
re concentration to 0.5 McFarland of the standard turbidity 
scale (1 x 108 CFU/mL). The final inoculum concentration in 
the microplate was 5 x 105 CFU/mL. Each plate included a 
positive control (MH broth with inoculum without antibiotic) 
and a negative control (MH broth without inoculum with 
antibiotic). The microplates were incubated at 30°C for 24 h. 
Ten μL of a MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide) solution were added to verify growth 
and incubated for 30 min at 30°C in the dark. Formazan pro-
duction indicated the presence of viable cells.

RESULTS AND DISCUSSION
In Mexico, the annual per capita consumption of rice is 8.5 
kg, considered the second crop with the highest expenditure 
among mexican families (SAGARPA, 2017). However, B. cereus, 
a pathogen associated with foodborne diseases worldwide, 
has been isolated in rice (Dietrich et al., 2021; Enosi Tuipulotu 
et al., 2021). Rice and its derivatives serve as an ideal growth 
medium for bacteria, particularly B. cereus, due to their com-
positional and chemical characteristics (pH close to 7, appro-
ximately 79% carbohydrates, 7% protein, and 2% fat). These 
properties, combined with the resilience of B. cereus spores, 
which can survive in dehydrated grains and withstand the 
temperatures typically applied during processing, enable 
the bacterium to proliferate under a variety of conditions 
(Jaquette and Beuchat, 1998). Therefore, in this study, strains 
of B. cereus s.l. were characterized and isolated from different 
rice-based preparations.

In the different studies of B. cereus in rice, strains with 
the same toxigenic profiles have not been isolated, and even 
the frequencies change depending on the type of rice and 
country (Ankolekar et al., 2009; Kim et al., 2009; 2014; Park et 
al., 2009), which is why studying the diversity of B. cereus stra-
ins in Mexico is essential. A total of six strains of the B. cereus 
s.l. group previously isolated from rice were characterized. 
All these strains were positive for the non-hemolytic toxin 
gene (nhe) and negative for the cereulide toxin gene (ces). 
Only one strain (B629) was positive for the hemolytic toxin BL 
gene (hbl) and negative for the cytotoxin K gene (cytK) (Table 
1) (Figure 1).

In this study, a remarkable occurrence of the non-
hemolytic toxin gene (nheABC) with a 100% frequency was 
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identified in the analyzed strains. Globally, non-hemolytic 
toxin genes are frequently reported, often reaching values 
of up to 100%. In Mexico, several food products, including 
cheese, ice cream, eggs, and vegetables, have shown a high 
prevalence of non-hemolytic toxin genes (Adame-Gomez et 
al., 2019; 2020b; Castulo-Arcos et al., 2022; Cruz-Facundo et 
al., 2022; 2023); it is important to note that these findings do 
not exclude the possibility that these strains are circulating 
in rice, in which, the frequency of non-hemolytic toxin genes 
show a range from 47.3% to 100%. The variability in these 
results is suggested to be related to the specific type of rice 
analyzed. For example, in ready-to-eat rice-based foods, a 
frequency of 47.3% was observed (Chen et al., 2022) while 
frequencies approaching 100% were identified in different 
types of rice, including white rice, brown rice, black rice, hard 
rice, and glutinous rice (Ankolekar et al., 2009; Kim et al., 2009; 
2014; Park et al., 2009).

The frequencies of Hbl toxin genes were low (16.6%) 
compared to the global reported frequencies for these toxin 
genes (40-70%) (Jessberger et al., 2020). As for Mexico, the 
frequencies are low (Adame-Gomez et al., 2019; 2020b; 
Castulo-Arcos et al., 2022; Cruz-Facundo et al., 2022; 2023) as 
in this study, which does not rule out a regional circulation 
of B. cereus strains in different food products. Regarding rice, 

the reported frequencies of Hbl toxin genes are high compa-
red to this study. The lowest frequencies for the Hbl toxin are 
found in strains isolated from rice-based ready-to-eat foods 
(36.3 %), and the highest frequencies are found in white 
and brown rice (83-100%) in China and Korea. In the United 
States, even when it was isolated from white and brown rice, 
the frequency of the Hbl toxin was low (56.6%), so it is not 
surprising that not only the type of product, but also the geo-
graphic region, is important in the frequency of enterotoxins. 
In this sense, the regionalization of diarrheal and emetic 
syndromes with the dietary habits of each country has even 
been described (Enosi Tuipulotu et al., 2021; Kotiranta et al., 
2000).

Another virulence factor, in addition to spore formation 
and toxin production by B. cereus, is the ability to form bio-
films. Biofilms are bacterial communities that, in the case of B. 
cereus, have been described in food production areas, beco-
ming a problem because, on one hand, they favor systematic 
contamination of food. On the other hand, the formation 
of biofilms prevents the eradication of the microorganisms 
trapped in it due to the characteristics of resistance to disin-
fectant agents (Majed et al., 2016). 

Regarding biofilm formation, strains B631, B632, B633, 
and B634 exhibit substantial biofilm production on glass 
material in contrast to strain B629 (p = 0.0211, p = 0.0445, 
p = 0.0211, p = 0.0216). Notably, three strains (B632, B633, 
B634) show the ability to form biofilms on polystyrene. It is 
noteworthy that none of the strains form biofilms on po-
lyethylene as shown in Figure 2.

In this investigation, prolific biofilm production was 
observed exclusively on glass material, in contrast to mi-
nimal production on polyethylene and, to a lesser extent, 
polystyrene. The variation in biofilm production on different 
materials is consistent with previous literature which attri-
bute such differences to the hydrophobic properties and 

Table 1. Toxin-coding genes identified in the B. cereus s.l. strains from this 
study.
Tabla 1. Genes de las toxinas identificadas en las cepas de B. cereus s.l. de 
este estudio.

Strain hbl nhe cytK ces
B629 + + - -
B630 - + + -
B631 - + + -
B632 - + + -
B633 - + + -
B634 - + + -

Figure 1. Gel electrophoresis of PCR products from toxin profile of B. cereus s.l. A) nheABC, B) hblABD, C) plcr- cytK. D) ces. Lane 1. B634, Lane 2. B633, Lane 3. 
B632, Lane 4. B631, Lane 5. B630, Lane 6. B629, Lane 7. Negative control, Lane 8. Positive control B. cereus ATCC 14579 (hbl+, plcr- cytK+).
Figura 1. Electroforesis en gel de los productos de PCR del perfil de toxinas de B. cereus s.l. A) nheABC, B) hblABD, C) plcr- cytK. D) ces. Carril 1. B634, Carril 2. B633, 
Carril 3. B632, Carril 4. B631, Carril 5. B630, Carril 6. B629, Carril 7. Control negativo, Carril 8. Control positivo B. cereus ATCC 14579 (hbl+, plcr- cytK+).
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surface roughness of the materials(Adame-Gómez et al., 
2020a; De-la-Pinta et al., 2019). In addition, the presence of 
trace elements, particularly iron, has been implicated in bio-
film production. Hayrapetyan et al. (2015) reported increased 
biofilm production on stainless steel, attributed to iron 
ions, compared to polystyrene. Within our research group, 
previous studies have indicated higher biofilm production 
on PVC compared to other materials (Adame-Gómez et al., 
2020a; Cruz-Facundo et al., 2022). It’s worth noting that dis-
crepancies between our results and those of this study may 

be related to the different origins of the strains. Hayrapetyan 
et al. (2016) relate the origin of the isolation to the adaptation 
capacity of the strains to environments with different iron 
conditions. 

Regarding the genes related to biofilm production, only 
strain B629 has the eps2 operon. All strains have the sipW-
tasA-calY operon genes (Figure 3). In B. cereus, the participa-
tion of different genes in the production of biofilms has been 
described; these genes are grouped in the sipW-tasA-calY 
and eps2 operons (Caro-Astorga et al., 2014; 2020). SipW is a 
peptidase that participates in the maturation of the tasA pro-
tein, which functions in the formation of amyloid-type fibers, 
which are part of a mature biofilm (Caro-Astorga et al., 2014). 
CalY fulfills a dual function during biofilm production, par-
ticipating as an adhesin on glass but not polystyrene in the 
early stages of biofilm formation and forming fibers during 
the late phases (Candela et al., 2019). Eps2 is an operon that 
include genes related to the extracellular matrix, the main 
component of biofilms (Caro-Astorga et al., 2020). The diverse 
functions these proteins fulfill explain why most of the stra-
ins in this study produce abundant biofilms on glass, except 
for strain B629, which, despite having all the genes related 
to biofilms, visually produces a biofilm that easily detaches 
from the air-liquid interface and therefore is not evident by 
safranin staining. Dogsa et al. (2013) showed that the width 
of the biofilm is related to the culture medium and to the 
presence of the tasA and epsA genes. The absence of one of 
these genes drastically reduces the thickness of the biofilm, 
and in the absence of both, the strain does not produce a 
biofilm. For B629, the production of a thin biofilm could be 
explained by presence of a non-functional tasA gene, which is 
reflected in a thin biofilm that easily detaches from the tube. 
Despite the detailed information about the participation of 

Figure 2. Biofilm production of B. cereus s.l. strains in different materials to 
37°C for 48h. Safranin absorbance data from two independent assays are 
shown, represented as mean and standard deviation. The p values were cal-
culated from the ANOVA statistical test with Tukey posthoc.
Figura 2. Producción de biofilm de las cepas de B. cereus s.l. en diferentes 
materiales a 37°C por 48h. Se muestran los datos de absorbancia de safra-
nina de dos ensayos diferentes, representados como media y desviación es-
tándar. El valor de p fue calculado por la prueba estadística de ANOVA con 
posthoc de Tukey.

Figure 3. Genes related to biofilm production. A) sipW, B) tasA, C) calY, D) eps2. Lane 1. B634, Lane 2. B633, Lane 3. B632, Lane 4. B631, 
Lane 5. B630, Lane 6. B629, Lane 7. Negative control, Lane 8. Positive B. cereus ATCC 14579 control.
Figura 3. Genes relacionados a la producción de biopelículas. A) sipW, B) tasA, C) calY, D) eps2. Carril 1. B634, Carril 2. B633, Carril 3. 
B632, Carril 4. B631, Carril 5. B630, Carril 6. B629, Carril 7. Control negativo, Carril 8. Control positivo B. cereus ATCC 14579.
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the sipW-tasA-calY and eps2 operons in biofilm production 
(Caro-Astorga et al., 2020; 2014), few epidemiological studies 
include them in molecular characterization (Cruz-Facundo et 
al., 2023). Since biofilm production is part of the resistance 
mechanisms and systematic contamination of food products 
(Enosi Tuipulotu et al., 2021), not only enterotoxigenic and 
enzymatic profiles should be considered, but also those ge-
netic profiles associated with biofilm production, which are 
included in this study.

B. cereus not only produces enterotoxins, but also a 
significant number of extracellular enzymes with degrada-
tive activity, such as phospholipases, proteases, chitinases, 
and amylases (Ivanova et al., 2003). This enzymatic profile 
is related to the ability of B. cereus to spoilage food and as 
a nutrient assimilation mechanism (Arslan et al., 2014). In 
this sense, the B629 strain is the only amylolytic strain in the 
study, and coincides with being the only strain isolated from 
fried rice. Strains isolated from sweet rice are capable of pro-
ducing proteases, which can have a significant impact on the 
decomposition of the product, since it has been described 
that proteases are capable of gelatinizing milk (Chen et al., 
2003). All strains produce proteases and strains in different 
proportions produce lecithinase. Only one strain can grow 
at refrigeration temperatures (B629) (Table 2). In this sense, 

strains of B. cereus are divided into two groups: psychotro-
phic and mesophilic. In this study, it is reported that strain 
B629 is a psychotrophic strain capable of growing in 5 days at 
a temperature of 10°C, and that the other strains, since they 
cannot grow at refrigeration temperatures, could be consi-
dered mesophilic strains. The presence of psychrotrophic 
strains, such as B629, impact the food safety of food products 
that are preserved in the cold, including rice.

Genetic diversity techniques, such as GTG’5, have 
allowed strains to be grouped according to different characte-
ristics, including growth temperature. Regarding the genetic 
diversity of the B. cereus s.l. group, strains were grouped into 
three clusters. In the first cluster, two clones were identified; 
the first clone includes strain B629 isolated from fried rice, 
the only strain that grows at refrigeration temperatures and 
is amylase positive, and is also the only one positive for the 
toxin BL gene (hbl); the second clone includes strains B632 
and B633, which share most of the characteristics with the 
clones belonging to the other clusters (Figure 4).

The GTG’5 technique allowed the identification of two 
clones, one with tolerance to refrigeration temperatures, 
amylolytic, not a biofilm producer, and isolated from fried 
rice. Furthermore, the technique allowed us to separate this 
clone from three remaining clones isolated from sweet rice 
with similar genotypic characteristics, including the profile of 
toxins and genes associated with biofilm production. This is 
evidence that the strains circulating in fried rice are different 
from the strains found in sweet rice, which allows us to esti-
mate that the risk of poisoning also depends on the product 
consumed. For example, emetic strains have been linked to 
the consumption of products such as pasta and rice, while 
the consumption of meat and vegetables has been linked to 
enterotoxigenic strains (Enosi Tuipulotu et al., 2021).

Regarding antimicrobial resistance, it was found that all 
strains are resistant to penicillin, ceftriaxone, clindamycin, 
and trimethoprim. The strains were susceptible to kanamycin, 

Table 2. Lytic enzymes and cold tolerance of B. cereus s.l. strains.
Tabla 2. Enzimas líticas y tolerancia al frío de las cepas de B. cereus s.l.

Strain Amylase Protease Lecithinase Growth in low 
temperatures (DT)

B629 + + 0.71 5
B630 - + 0.52 -
B631 - + 0.60 -
B632 - + 0.50 -
B633 - + 0.50 -
B634 - + 0.60 -

Detection time (DT): the day on which growth was observed
Tiempo de detección (DT): El día en donde se observa crecimiento

Figure 4. Dendrogram obtained by GTG-5’ of B. cereus s.l. strains. Six gyrB-positive rice strains were grouped, three clusters and four 
clones. The DICE test was used, and the strains were grouped by hierarchical cluster. A DICE coefficient >0.8 was used to cluster the 
strains. FR: Fried rice. SR: Sweet rice.
Figura 4. Dendrograma obtenido por GTG-5’ de las cepas de B. cereus s.l. Se agruparon seis cepas positivas para gyrB, tres grupos y 
cuatro clones. Se utilizó la prueba DICE y las cepas fueron agrupados por grupo jerárquico. Un coeficiente DICE >0.8 fue usado para 
agrupar las cepas. FR: Arroz frito. SR: Arroz dulce.
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gentamicin, vancomycin, tetracycline, chloramphenicol, and 
ciprofloxacin. It is important to note that only B629 has inter-
mediate sensitivity to erythromycin (Table 3).

Regarding antibiotic resistance, strains of B. cereus s.l. 
from this study were resistant to beta-lactams, which has 
been reported in other studies (Chen et al., 2022; Fraccal-
vieri et al., 2022; Park et al., 2009; Perera and Ranasinghe, 
2012). Fraccalvieri et al. (2022) demonstrated that the main 
mechanism of resistance to beta-lactams is mediated by the 
beta-lactamases BLA-1 and BLA-2, since all their beta-lactam 
resistant strains presented these genes. In addition to resis-
tance to beta-lactams, high resistance to trimethoprim has 
also been reported in other studies in strains of B. cereus s.l. 
isolated from rice and cheese (Chen et al., 2022; Cruz-Facundo 
et al., 2023). It is important to mention the reports related to 
the high susceptibility to different groups of antimicrobials 
such as aminoglycosides, glycopeptides, tetracyclines, and 
phenicol’s (Chen et al., 2022; Cruz-Facundo et al., 2023; Park et 
al., 2009) which is also consistent with what was reported in 
these strains. However, the presence of a strain with interme-
diate sensitivity to erythromycin in this study (B629) should 
not be underestimated.
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