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Simultaneous degradation of phenolic compounds under denitrifying 
conditions in a UASB reactor provided with granular activated carbon 
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ABSTRACT
This work studied the removal capacity of a mixture of pheno-
lic compounds (phenol, p-cresol, o-cresol) by denitrification; 
in addition, the effect of granular activated carbon (GAC) in 
the process carried out in UASB (up-flow anaerobic sludge 
blanket) reactors. The organic load was increased from 450 
to 3250 mg C L-1d-1 by adjusting the HRT from 2 to 0.25 d in 
the reactor with GAC and the control reactor without GAC. 
The removal efficiencies of phenolic compounds increased 
as the organic load increased, obtaining values from 89.7 % 
to 95.5 % in the reactor without GAC and 95.8 % to 99.1 % in 
the reactor with GAC. The nitrate removal in the reactor with 
GAC reached 79.3 % to 98.0 % efficiencies, while the control 
obtained 64.8 % to 96.9 %. Finally, the maximum capacities 
of GAC were evaluated by adsorption isotherms, obtaining 
the following values (mg g-1): 164.6 for o-cresol, 134.5 for p-
cresol, 110.7 for phenol, and 44.4 for nitrate. The results show 
the capacity of a denitrification process to remove a mixture 
of phenolic compounds. In addition, the reactor with GAC 
increased the removal efficiency of all compounds.
Keywords: phenolic compounds; activated carbon; adsorption 
isotherms; UASB reactor. 

RESUMEN
El presente trabajo, estudió la capacidad de eliminación 
de una mezcla de compuestos fenólicos (fenol, p-cresol, o-
cresol) por vía desnitrificante; además, el efecto del carbón 
activado granular (CAG) en el proceso realizado en reactores 
UASB (up-flow anaerobic sludge blanket). La carga orgánica 
se fue incrementando de 450 a 3250 mg C L-1d-1, mediante 
el ajuste del TRH de 2 to 0.25 d en el reactor con CAG y en 
el reactor control sin CAG. Las eficiencias de eliminación 
de los compuestos fenólicos aumentaron a medida que se 
incrementó la carga orgánica, obteniéndose valores del 89.7 
% al 95.5 % en el reactor sin CAG, y del 95.8 al 99.1 % en el 
reactor con CAG. Para la eliminación de nitrato, el reactor con 
CAG alcanzó eficiencias de 79.3 % a 98.0 %, mientras que el 
control obtuvo 64.8 % a 96.9 %. Finalmente, se evaluaron las 
capacidades máximas del CAG mediante isotermas de ad-
sorción, obteniéndose los siguientes valores (mg g-1): 164.6 

para o-cresol, 134.5 para p-cresol, 110.7 para fenol y 44.4 para 
nitrato. Los resultados muestran la capacidad de un proceso 
desnitrificante de eliminar simultáneamente una mezcla de 
compuestos fenólicos, además, se observó que el CAG incre-
mentó la eficiencia eliminación de todos los compuestos.
Palabras clave: compuestos fenólicos; carbón activado; isoter-
mas de adsorción; reactor UASB.

INTRODUCTION
Most effluents from industrial processes, especially petro-
chemical industries, significantly impact the environment 
(Hamdaoui and Naffrechoux, 2007; Pavithra et al., 2023). 
Due to the harmful substances from the oil and refining 
processes involved, the discharges from these industries 
contain large amounts of phenolic compounds (Dąbrowsky 
et al., 2005; Al Bsoul et al., 2021; Zhou and Nemati, 2022). Re-
cently, new strategies for removing or biodegrading various 
phenolic compounds and their isomers have been studied 
by coupling different biological and physical processes. The 
removal of phenolic compounds is critical because they have 
been considered priority pollutants (Al Bsoul et al., 2021; Said 
et al., 2021). It is necessary to develop treatments to minimize 
the toxicity of these compounds, preferably using alter-
natives that are friendly to the environment and have low 
operating costs (González et al., 2013; Panigrahy et al., 2020; 
Ahmaruzzaman et al., 2024) that can be achieved through 
biodegradation since biological processes are suitable to 
remove organic contaminants at low cost (Mahdavianpour et 
al., 2018; Yan et al., 2021; Hernandez et al., 2024).

Many microorganisms can metabolize aromatic com-
pounds, including anaerobic fungi, bacillus bacteria, and 
denitrifying bacteria (Singh et al., 2020). Denitrifying bacteria 
can oxidize different organic compounds, including some 
highly recalcitrant contaminants such as phenol, o-cresol, 
p-cresol, and m-cresol, among others (Liu et al., 2016; Han et 
al., 2020; Singh et al., 2020; Feng et al., 2023). Organotrophic 
denitrification provides a feasible alternative to the petro-
chemical industry, because their effluents contain significant 
concentrations of nitrogen and phenolic compounds, which 
can be biodegraded following this metabolic pathway and, 
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at best, can be entirely removed (Meza et al., 2008; González 
et al., 2013).

On the other hand, adsorption is a process that is widely 
used in water treatment systems. Adsorption in carbona-
ceous materials is complicated by the interplay of several fac-
tors affecting the adsorption capacity: concentration, type of 
functional group and their location and distribution on the 
surface, pore size distribution, and pore connectivity (Liu 
et al., 2017; Ahmaruzzaman et al., 2024). Activated carbons 
have proper adsorption capacity for various organic com-
pounds, such as phenolic compounds from different types 
of water (Said et al., 2021; Pavithra et al., 2023). Despite this, 
studies on treating these effluents have focused on using a 
single phenolic compound, which limits the understanding 
of the process compared to a real effluent. Thus, the objec-
tive of the present study was to evaluate the simultaneous 
biodegradation capacity of three phenolic compounds 
(phenol, p-cresol, o-cresol) by a denitrifying consortium in 
a UASB (Upflow Anaerobic Sludge Blanket) reactor, as well 
as the effect of the application of granular activated carbon 
(GAC) in the process. In addition, the present study describes 
the adsorption behavior of phenolic compounds through 
adsorption isotherms obtained from batch experiments, 
adjusting to the Freundlich and Langmuir equations for cal-
culating the adsorption parameters.

MATERIALS AND METHODS
Anaerobic consortium and GAC
A 0.7 L UASB reactor was inoculated with 20 g volatile sus-
pended solids (VSS) L-1 of anaerobic granular sludge from 
a biologic process in a full-scale UASB reactor installed in a 
brewery factory in Cd. Obregón, Mexico. The acclimatization 
period consisted of feeding a mix of phenolic compounds: 
phenol, p-cresol, o-cresol, and nitrate as electron acceptors 
(C/N ratio of 1.08), with a hydraulic residence time (HRT) of 48 
h. After two months, the reactor reached a chemical oxygen 
demand (COD) removal efficiency of 88 % for phenolic com-
pounds and 80 % for nitrate. The acclimatized sludge was 
used to inoculate two reactors, as described in the following 
section.

The GAC used was activated charcoal (Sigma-Aldrich, 
Darco® 242268) with a particle size of 20-40 mesh (~400-800 
mm), a total pore volume of 0.95 mL/g, and a total surface 
area of 650 m2/g, according to the technical sheet of the 
supplier. The GAC was washed twice with distilled water to 
remove fine powder particles; then, it was dried in an oven at 
60 °C for 12 h before its use.

UASB reactor operated with and without GAC
After reaching the steady state to acclimate the sludge, two 
laboratory-scale UASB glass reactors of 0.7 L (35 cm height, 
5.9 cm diameter) were inoculated with 10 g VSS L-1 of an anae-
robic consortium. A reactor was supplemented with 20 g L-1 
of GAC, and the control reactor was operated without GAC. 
The reactors were bottom-fed using synthetic solutions with 
phenolic compounds and nitrate, respectively. The solution 

used as carbon source was composed with (g L-1): p-cresol 
(0.036), o-cresol (0.0652), phenol (0.0385), K2HPO4 (3.2), KH-

2PO4 (1.2), and MgCl2·6H2O (0.4). The solution with nitrate was 
composed of NaNO3 (2.46 g L-1), Na2SO4 (2 g L-1), and 2 mL L-1 
of trace element solution, which composition was as follows 
(mg L-1): FeCl3·6H2O (30), CaCl2·2H2O (600), Na2MoO4·2H2O 
(120), CuSO4·5H2O (20). The reactors were operated at room 
temperature (~25 °C). The performance of the reactors was 
evaluated in the four stages described in Table 1.

The influent and effluent samples were taken to analyze 
the performance of reactors, sampling daily in stages 1 and 2 
and every third day in stages 3 and 4. The removal efficiency 
of phenolic compounds and nitrate was obtained with the 
following equation:

     

 (1)
where C0 and Cf are the initial and final concentrations of each 
compound in the solution (mg L-1), respectively.

Adsorption of phenolic compounds and nitrate on GAC
Adsorption experiments were conducted to identify the 
capacity of GAC to adsorb the three phenolic compounds 
and nitrate. A fixed amount of GAC (0.12 g) was added to an 
aqueous solution (0.04 L) containing 0-1 g L-1 of each com-
pound (phenol, p-cresol, and o-cresol) in a stoppered 50 mL 
flask. The flasks were shaken at 150 rpm and 25 °C for 72 h 
to achieve adsorption equilibrium. The concentration of each 
compound in the mixtures was measured using the spectro-
photometric method (Spectroquant Pharo 300) at 271, 291, 
and 500 nm for phenol, p-cresol, and o-cresol, respectively. 
The remaining concentration was measured in each solution 
to obtain the equilibrium adsorption capacity of the adsor-
bent (mg g-1):

        

 (2)
where qe is the adsorption capacity of the adsorbent at 
equilibrium (mg g-1), V is the volume of solution (L), Ce is the 
equilibrium concentration of each aromatic compound in 
the solution (mg L-1), and m is the mass of GAC (g).

The experimental results from the equilibrium studies 
were adjusted for different isotherm models to find the best 
to represent these experimental data. The models used were 

Table 1. Operational periods in UASB reactors to treat phenolic compounds 
and nitrate.
Tabla 1. Periodos de operación en los reactores UASB para tratar compuestos 
fenólicos y nitrato.

Period HRT
(days)

Organic Load
(mg C L-1 d-1)

Inlet flow
(L)

Period
(days)

1 2 450 0.345 56

2 0.8 1116 0.915 8

3 0.5 1626 1.500 15

4 0.25 3252 3.025 15

2
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Freundlich and Langmuir (Ahalya et al., 2006). Equations (3) 
and (4) correspond to these models.

   

 (3)
      

 (4)

where KF (mg g-1 L1/nmg1-n/1) and n (dimensionless) are Fre-
undlich constants, and Qmax (mg g-1) and b (L mg-1) are the 
maximum adsorption capacity and Langmuir constant. The 
data obtained were adjusted by a nonlinear estimation using 
the least squares method implemented in the Statistica 8.0 
software.

Analytical methods
COD and nitrite were analyzed by a colorimetric method with 
a spectrophotometer (Spectroquant Pharo 300) following 
the procedure outlined in Standard Methods (APHA, 1985). 
The determination of the COD was based on the quantifica-
tion of the oxygen equivalent in the organic matter content 
by the action of potassium dichromate in the presence of a 
catalytic solution of sulfuric acid and silver sulfate. This solu-
tion was introduced into a thermoreactor for 2 h, and finally, 
the absorbance was measured in the spectrophotometer 
at 620 nm, according to the norm NMX-AA-030-SCFI-2001 
(SCFI, 2001). 

For nitrate determination, a column containing cad-
mium filings lightly coated with metallic copper was used 
to reduce nitrate to nitrite. The nitrite produced was deter-
mined by diazotization with sulfanilamide and coupled with 
N-(1-naphthyl)-ethylenediamine to form a highly colored 
compound whose absorbance is measured in a spectro-
photometer at 543 nm, according to norm NMX-AA-079-
SCFI-2001 (SCFI, 2001). The VSS was performed according 
to procedures in Standard Methods. Before analysis, liquid 
samples were filtered with a 0.45 µm nylon membrane. The 
COD reported in the continuous reactor represented the sum 
of the COD corresponding to all the phenolic compounds in 
the study (phenol + p-cresol + o-cresol).

RESULTS AND DISCUSSION
Adsorption of phenolic compounds and nitrate on GAC
The removal of phenolic compounds (phenol, p-cresol, and 
o-cresol) in UASB reactors under denitrifying conditions 
with and without GAC occurred at different organic loads. 
In addition, the adsorption of these compounds on GAC 
was evaluated and modeled to identify the contribution 
of this process during the biodegradation. The adsorption 
isotherms of phenolic compounds and nitrate from aqueous 
solutions revealed that all compounds were adsorbed on 
GAC, following the Langmuir model (Figure 1). The maximum 
adsorption capacities were (mg g-1): 164.6 for o-cresol, 134.5 
for p-cresol, 110.7 for phenol, and 44.4 for nitrate. According 
to Li et al. (2021), the Langmuir model, which describes the 

Figure 1. Adsorption isotherms of o-cresol (●), p-cresol (u), phenol (s), and 
nitrate () on GAC at pH 7.0. Langmuir model can be used to properly adjust 
the adsorption data of o-cresol (—), p-cresol (---), and phenol (•••). Freundlich 
model best describes the adsorption of nitrate (=).
Figura 1. Isotermas de adsorción de o-cresol (●), p-cresol (u, fenol (s) y 
nitrato () en CAG a pH 7.0. El modelo de Langmuir puede ser utilizado para 
ajustar los datos de adsorción de o-cresol (—), p-cresol (---) y fenol (•••). El 
modelo de Freundlich ajusta apropiadamente para la adsorción de nitrato 
(=).
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adsorption of phenolic compounds, assumes that the surface 
of an adsorbent is uniform and that adsorption occurs on the 
outer surface of the adsorbent through monolayer adsorp-
tion. In the case of nitrate, the adsorption fits the Freundlich 
model since it does not asymptote as the concentrations of 
the compound increase.

The results indicate that cresols are adsorbed to a higher 
extent than phenol. According to Dąbrowsky et al. (2005), the 
Langmiur L class is the most observed class of adsorption of 
phenolic compounds, which indicates that the aromatic ring 
adsorbs parallel to the surface without significant competi-
tion between the adsorbate and the solvent to occupy the 
adsorption sites. Hamdaoui and Naffrechoux (2007) indicate 
that the main characteristics of phenols for adsorption are 
hydrophobicity, solubility, molecular weight, cross-sectional 
area, and acidity. A decrease in solubility is associated with an 
increase in adsorption capacity.

Additionally, it was documented that the adsorption 
of organic pollutants is proportional to the hydrophobicity 
between adsorbent and adsorbate (Fu et al., 2021). The 
adsorption capacity of a given GAC for the different phe-
nols is generally related to their solubility in water and the 
hydrophobic character of their substituents. Thus, p-cresol 
possesses very low water solubility and is typically adsorbed 
on the GAC, which is mainly different from the other phenols. 
However, p-cresol and o-cresol, which have a hydrophobic 
group, are also adsorbed more significantly than phenol, 
which has hydrophilic groups.

Another determining factor for the adsorption is the 
interaction between the phenolic compounds and the GAC 

3
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surface. Nouri et al. (2002) stated that the dispersion interac-
tions between the aromatic rings of the phenolic compounds 
and those of the GAC surface, are the main forces involved 
in the adsorption process. Meanwhile, Al-Degs et al. (2000) 
indicate that the adsorption of phenol on GAC consists of the 
interaction between electron donors and acceptors, or it may 
even involve dispersion forces between the π electrons of the 
phenol and the π electrons of the graphene layers of the GAC. 
Table 2 shows the constants calculated from the Langmuir 
and Freundlich models. These values provide information 
about the behavior of the GAC surface used in the present 
study. For the Langmuir model, correlation coefficient values 
greater than 0.9 were obtained, indicating a proper fit of the 
isothermal model for all compounds. The model suggests 
that GAC does not have a homogeneous surface since b 
(constant of energy affinity) presents values below unity, 
from which it can be inferred that the adsorbent does not 
have a strong affinity for the solute molecules (Monroy, 2010). 
The Freundlich model provides information on the intensity 
of adsorption or surface heterogeneity, determined by the KF 
and n constants. The KF refers to the adsorption capacity of 
GAC, in which, at higher values, the affinity of the adsorbent 
for the adsorbate is greater. In this sense, the adsorption of 
p-cresol and o-cresol, with the highest KF, indicates a greater 
adsorption affinity on GAC compared to nitrate, which had 
the lowest KF.

Table 2. Isotherm parameters estimated from experimental data for the 
adsorption of pollutants on GAC at pH 7.0.
Tabla 2. Parámetros de isotermas estimados a partir de datos experimentales 
de adsorción de contaminantes en CAG a pH 7.0.

Pollutants
Langmuir Freundlich

Qmax b r2 KF n r2

p-cresol 144.0 0.213 0.900 59.9 6.43 0.753

o-cresol 177.6 0.101 0.976 48.3 4.35 0.945

Phenol 114.9 0.100 0.925 40.1 5.79 0.841

Nitrate 67.41 0.005 0.960 4.53 2.61 0.982

Units: Qmax: mg g-1; b: L mg-1; k: mg g-1 L1/nmg1-n/1; n: dimensionless.

Table 3. Performance of UASB reactors with and without GAC, removal efficiencies of COD (mixture of 
phenol, p-cresol, and o-cresol) and nitrate.
Tabla 3. Desempeño de reactores UASB con y sin CAG, eficiencias de eliminación de DQO (mezcla de fenol, 
p-cresol, y o-cresol) y nitrato.

Period 
(days)

COD removal efficiencies (%) Nitrate removal efficiencies (%)

Influent 
loading rate
(mg C L-1 d-1)

GAC + 
sludge Sludge

Influent 
loading rate
(mg N L-1 d-1)

GAC + 
Sludge Sludge

1-50 450 95.8 ± 7.9a 89.7 ± 1.5b 140 79.3 ± 
19.3a

64.8 ± 
17.1b

51-60 1100 96.9 ± 0.1a 92.2 ± 1.4b 370 97.0 ± 3.0a 89.6 ± 6.6a

61-75 1600 97.7 ± 0.2a 93.5 ± 0.5b 590 93.7 ± 2.6a 90.4 ± 1.8b

76-90 3250 99.1 ± 0.7a 95.5 ± 0.1b 1140 98.0 ± 0.1a 96.9 ± 0.5b

Impact of GAC on the removal of phenolic compounds
The addition of GAC significantly improved the performance 
of the reactor, as evidenced by the high COD removal effi-
ciencies compared to the reactor without GAC. The HRT for 
the two reactors was periodically adjusted from 2 to 0.25 d, 
with the accompanying adjustment in the carbon loading 
rates from 450 to 3250 mg C L-1d-1. Table 3 shows the four 
changes in loading rates and the removal efficiencies of 
phenolic compounds (measured as COD) and nitrate for each 
operating period studied.

The denitrifying consortium was able to simultaneously 
mineralize the phenolic compounds at the four loading rates 
tested, improving the removal efficiencies in both reactors 
with increasing loading rates (Figure 2). The addition of GAC 
improved the performance of the reactor, evidenced by the 
high COD and nitrate removal efficiencies compared to the 
reactor without GAC during the four operational periods, 
with statistical differences between means (Table 3). The 
efficiencies obtained in the reactor with GAC were 95 to 99 
% for all periods, while the reactor without GAC had 89 % 
and 95 % removal efficiencies. In both reactors, the removal 
efficiencies increased gradually as the loading rate increased. 
The reactor without GAC showed a COD removal efficiency 
of 89.7 % in period 1, with lower efficiencies observed mainly 
during the first 20 days of operation due to an adaptation 
stage from biomass to phenolic compounds. Then, the 
efficiencies were ≥90 % during the same stage. Following 
this stage, the removal efficiencies were greater than 90 %, 
reaching the last stage of operation at the highest organic 
load-tested, an average of 95.5 %.

The removal of phenolic compounds under denitrifying 
conditions has been previously studied. For instance, the 
simultaneous oxidation of p-cresol or phenol with sulfide has 
been observed (Meza et al., 2008; Liu et al., 2016), as well as 
the oxidation of p-cresol with ammonium coupled with the 
reduction of nitrite (González et al., 2012). Nonetheless, few 
studies have presented the oxidation of a mixture of phenolic 
compounds via denitrification, as presented in this study. The 
COD removal profiles of the reactor with GAC showed higher 

GAC + sludge = UASB reactor with GAC; 
sludge = UASB reactor without GAC.
COD, chemical oxygen demand.
Different letters after each data 
indicate statistical differences (Tukey 
test, confidence level of 95 %). The 
test between means compares each 
reactor, GAC + Sludge vs. Sludge, for 
each independent period.
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Figure 2. COD removal efficiencies in the UASB reactors with () and without 
(u) GAC under different carbon loading rates. COD represents a mixture of 
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Figura 2. Eficiencias de eliminación de DQO en los reactores UASB con () y 
sin (u) CAG bajo diferentes cargas de carbono. DQO representa la mezcla de 
p-cresol, o-cresol y fenol.
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- (); Effluent N-NO2
- (s). 

Figura 3. Perfil de compuestos nitrogenados en el efluente durante todos 
los periodos de operación utilizando la mezcla de p-cresol, o-cresol y fenol, 
como fuente de energía por un lodo anaerobio. Panel A: reactor con CAG. 
Panel B: reactor sin CAG. Símbolos: Efluente N-NO3

- (); Efluente N-NO2
- (s).

stability throughout the entire operation period; conversely, 
the reactor without GAC showed slight decreases in the COD 
removal efficiencies in periods 2 and 3 after increasing the 
loading rate (Figure 2). The reactor with GAC showed slight 
increments, between 3.6 and 6.1 %, for the four operation pe-
riods above the reactor without GAC. The high removal effi-
ciency of phenolic compounds in the reactor provided with 
GAC can be associated with the adsorption capacity of GAC, 
promoting a decrease in toxicity for microorganisms (Singh 
et al., 2016). Moreover, during the biodegradation of phenol, 
the GAC addition protects microorganisms from shock loads 
and improves tolerance through a protective effect due to 
rich pores (Li et al., 2023).

Impact of GAC on the removal of nitrate
Concerning nitrate, the reactors were similar to carbon com-
pounds, achieving a better performance in the reactor with 
GAC througout all periods (Table 3 and Figure 3). During the 
first days of operation (1-30 days in period 1), nitrate removal 
was low in the reactor without GAC, requiring 30 days to 
decrease the concentration below 25 mg N L-1d-1; nonethe-
less, in the reactor with GAC required 15 days (Figure 3). The 
nitrate removal efficiencies in the reactor with GAC ranged 
from 79 to 98 %, whereas in the reactor without GAC were 
between 64 to 96 % (Table 3). The denitrifying condition can 
be confirmed by the nitrite measured in the effluent (Figure 
3). This compound indicates partial denitrification, but com-
plete denitrification is presumed to occur based on the high 
consumption of organic matter (i.e., phenolic compounds) 

observed in the two reactors. Considering the increment in 
the nitrate loading rate and the concentration in the effluent 
for each stage, it is suggested that microorganisms were 
adapted to the system, coinciding with high removal effi-
ciencies of phenolics in both reactors, especially with GAC.

It is observed that with the increment in the removal of 
phenolic compounds, the removal of nitrate also increases, 
which is promoted by the electron transfer from the oxidation 
of the phenolic compounds, contributing to the reduction of 
nitrate during the denitrifying process. This performance is 
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observed to a high extent in the reactor with GAC compared 
to the reactor without GAC. It can be associated with the 
adsorption of phenolic compounds and nitrate, promoting 
their availability by microorganisms closer and sooner. The 
presence of nitrite in the effluent is minimal except at the 
beginning of the operation of the reactors, which may be 
due to the adaptation process of the biomass to phenolic 
compounds mentioned above. The reactor with GAC had 
a response up to 14 % (in period 1) higher than the reactor 
without GAC for nitrate removal. This response could be 
associated with carbon-based material’s capacity to promote 
the biofilm formation with denitrifying bacteria on the core 
particles and promoting increment in the relative abundance 
of denitrification metabolic enzymes, except nitrate reducta-
se and nitrogenase (Ge et al., 2018). 

CONCLUSION
The results showed that it is possible to simultaneously bio-
degrade phenol, p-cresol, and o-cresol in a UASB reactor un-
der denitrifying conditions with removal percentages higher 
than 89.7 % at the different organic loads tested. In addition, 
it was observed that GAC increased the removal efficiency of 
all compounds, increasing from 89.7 % to 95.5 % obtained in 
the reactor without GAC, to 95.8 to 99.1 % in the reactor with 
GAC, as well as a possible the adaptation of the consortium to 
increases in organic load in the reactors. For the nitrate remo-
val, the reactor with GAC achieved efficiencies from 79.3 % to 
98.0 %; meanwhile, the control obtained 64.8 % to 96.9 %. The 
Langmuir model was the most appropriate to fit the experi-
mental adsorption results of phenol, p-cresol, and o-cresol. 
The adsorption isotherms displayed the following order of 
adsorption capacity: o-cresol>p-cresol>phenol>nitrate. The 
results show the capacity of a denitrifying process to remove 
a mixture of phenolic compounds from industrial effluents, 
such as those discharged by the chemical and petrochemical 
industries.
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