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ABSTRACT
The domestic Turkey (Meleagris gallopavo) is the second 
largest contributor to poultry meat production, following 
chickens. The study of microsatellite organization and dis-
tribution is highly important in genomics and evolutionary 
studies. The in silico mining for microsatellites leverages the 
power of computational biology to streamline, enhance 
the discovery of microsatellite markers and reduce the 
cost of microsatellite detection. The present study aimed 
to evaluate in silico mining for microsatellite loci in the ge-
nome of domestic turkey. Reference sequences of several 
chromosomes were obtained from NBCI and analyzed using 
Krait software. Chromosome 4 had the highest number of 
perfect microsatellites, while chromosome 18 had the lowest 
number. However, chromosome 27 had the highest relative 
abundance, followed by chromosome 13. Chromosome 18 
again had the lowest relative abundance. Chromosome 4 
had the most imperfect microsatellites and chromosome 18 
had the least. A total of 121,248 microsatellite primers were 
designed. These microsatellite loci and markers will play 
important roles as instrumental in linkage mapping and will 
significantly enhance research on turkey genetics.
Keywords: In silico, Meleagris gallopavo, Microsatellites, Mo-
tifs, Turkeys

RESUMEN 
El pavo doméstico (Meleagris gallopavo) es el segundo mayor 
contribuyente a la producción de carne de aves de corral, 
después de los pollos. El estudio de la organización y distri-
bución de microsatélites es muy importante en los estudios 
genómicos y evolutivos. La minería in silico de microsatélites 
aprovecha el poder de la biología computacional para agilizar, 
mejorar el descubrimiento de marcadores de microsatélites 
y reducir el costo de la detección de microsatélites. El presen-
te estudio tuvo como objetivo evaluar la minería in silico de 
loci de microsatélites en el genoma del pavo doméstico. Se 
obtuvieron secuencias de referencia de varios cromosomas 
de NBCI y se analizaron utilizando el software Krait. El cromo-
soma 4 tuvo el mayor número de microsatélites perfectos, 
mientras que el cromosoma 18 tuvo el menor número. Sin 
embargo, el cromosoma 27 tuvo la mayor abundancia rela-
tiva, seguido por el cromosoma 13. El cromosoma 18 nue-
vamente tuvo la menor abundancia relativa. El cromosoma 

4 tuvo la mayor cantidad de microsatélites imperfectos y el 
cromosoma 18 tuvo la menor cantidad. Se diseñaron un total 
de 121.248 cebadores de microsatélites. Estos loci y marca-
dores microsatélites desempeñarán un papel importante en 
el mapeo de ligamiento y mejorarán significativamente la 
investigación sobre la genética del pavo. 
Palabras clave: In silico, Meleagris gallopavo, microsatélites, 
motivos, pavos.

INTRODUCTION
Since the domestication of turkey (Meleagris gallopavo) in 
the Southwestern United States and Mexico (Thornton et al., 
2012; Vergara et al., 2019), it has been considered one of the 
major important poultry species that contributes to meat 
production worldwide (Aslam et al., 2011). The United States 
is the leading country in turkey’s meat intake, followed by 
Brazil and Germany, which accounted for 41, 8.1, and 8 % of 
the total intake of turkey meat (Hristakieva, 2021). Neverthe-
less, turkey meat still shares a small proportion of global meat 
demand. According to FAO, turkey meat production ranked 
second (5 %), after chicken (90 %), of the global poultry 
meat production. The environmental and ethical concerns 
surrounding industrial animal agriculture have become 
increasingly evident. Therefore, the intake pattern of meat-
based proteins is projected to be reshaped significantly by 
2030. While ruminants are a major contributor to greenhouse 
gas emissions (Giamouri et al., 2023), turkey production, once 
viewed as a promising alternative to traditional livestock, is 
also expected to decrease emissions in the coming decade 
(Kheiralipour et al., 2024; Clauss et al., 2020). 

Generally, avian genomes are interesting because they 
tend to be compact, with less DNA overall, yet packed into 
more chromosomes compared to mammals (Axelsson et 
al., 2005). Turkey’s genome is quite larger than chicken and 
consists of 1,115,474,681 bp, with 16,226 coding genes, and 
30,708 gene transcripts (Dalloul et al., 2010). The genome 
of the turkey is not fully uncovered, and massive efforts are 
needed to be fully understood (Barros et al., 2023). For many 
decades, microsatellites (also called Short Sequence Repeats, 
SSRs) were the markers of choice for breeders and geneticists, 
as they were used for many purposes including the conser-
vation of genetic resources (Olubunmi, 2019). Microsatellite 
loci are scattered throughout the genome in both coding 
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and non-coding regions. Certain repeats are preferred and 
are often predominant in certain genomic locations. Howe-
ver, the significance of this observation is unclear (Vieira et 
al., 2016). Microsatellite loci are among the variable types of 
DNA within the genome, and the changes in their polymor-
phisms derive mainly from changeability in length instead 
of within the essential arrangement (Abdul-Muneer, 2014). 
A more profound understanding of the developmental and 
mutational properties of microsatellites is in this manner re-
quired, not as it were to get it how the genome is organized, 
but moreover to accurately utilize microsatellites information 
in populace inheritance of important traits (Wöhrmann and 
Weising, 2011). 

In the past few decades, there has been significant 
effort focused on the development of microsatellites in the 
genome of turkeys. In 1999, several turkey genomic libraries 
were constructed, and 50 microsatellite loci were characte-
rized (Huang et al., 1999), followed by the construction of a 
linkage map contacting 74 markers (Burt et al., 2003), and 
arranging 314 microsatellite loci in 29 linkage groups. The 
latter resulted in the identified of ~800 microsatellite mar-
kers (Reed et al., 2007). Recently, a set of 34 microsatellites 
was identified (Canales Vergara et al., 2020), and successfully 
used to estimate genetic diversity parameters in 10 domestic 
turkey populations. 

Given the high cost, labor-intensive nature, and limited 
scalability of developing microsatellite markers, in silico ap-
proaches present a valuable alternative, offering faster and 
more comprehensible insights into target genomes. There-
fore, this study aimed to perform an in silico analysis of the 
whole-genome sequence of the turkey (Meleagris gallopavo) 
mining it to identify a panel of microsatellite loci, and explore 
the distribution and density of microsatellites within the 
turkey genomes.

MATHEMATICAL MODEL
Data source. Sequence data of the domestic turkey chro-
mosomes were obtained from the National Center for 
Biotechnology Information (NCBI). The analyzed reference 
sequences were uploaded to NCBI in 2019, with a reference 
of Turkey_5.1 (GCA_000146605.4). 
In silico mining of whole-genome-wide SSRs. The sequen-
ce data were downloaded in FASTA format. The Krait software 
v.1.1.0 (Du et al., 2018) was used for microsatellite mining. 
Krait software is based on several data mining algorithms for 
microsatellite detection. It uses pattern recognition to identify 
repeat sequences within genomic data, sequence alignment 
to compare these sequences against databases for accuracy, 
and also conducts statistical analysis to calculate frequency 
and distribution of microsatellites across chromosomes. The 
authors selected to use Krait for the analysis because it is an 
ultrafast tool with a user-friendly graphical interface, making 
it ideal for genome-wide microsatellite analysis. Additionally, 
Krait is a powerful tool that not only detects various types of 
microsatellites (both perfect and imperfect) but also assists in 
designing primers for them. This makes it ideal for efficiently 

identifying and defining valuable microsatellite markers. The 
analysis was carried out based on to the following criteria: 
mono-nucleotide repeat motifs were required to have at 
least of 10 repeats, di-nucleotide repeat motifs were at least 
7 repeats, tri-nucleotide repeat motifs at least 5 repeats, and 
tetra-, penta-, and hexa-nucleotide repeat motifs at least 4 
repeats. 

The Primer3 tool (Rozen and Skaletsky, 1999) integrated 
within the Krait software package was used to design pri-
mers for the identified microsatellite markers. Primer3 uses 
empirical formulas to calculate the melting temperature 
of potential primers to select suitable Tm ranges. Additio-
nally, Primer3 checks the primer specificities by aligning 
the primers against target sequences in order to minimize 
non-specific binding. The program also assesses the primer 
lengths and GC contents regarding optimal annealing and 
stability (Untergasser et al., 2012).

The total numbers obtained were normalized either as a 
percentage or as the number of SSRs per megabase (Mb) of 
sequence, enabling comparison across genome sequences 
of different sizes such as relative abundance. The estimated 
repeat density (base pairs per Mb) was obtained by dividing 
the total number of base pairs occupied by SSRs by the total 
genome size. Correlation coefficients between different SSR-
related parameters were estimated using the software SPSS 
(Morgan et al., 2019).

RESULTS
The domestic Turkey is one of the most important poultry 
species, with a large genome consisting of 1,061,817,103 base 
pairs. A total of 30 autosomal and two sexual chromosomes 
were analyzed. The total sequence length was 1,115,474,681, 
and the total unmapped length was 1,080,180,254, with 
scaffolds of 187,695. As shown in Figure 1, the largest chro-
mosomes of the turkey genome are chromosomes 1, 2, and 3, 
followed by the Z chromosome. In contrast, chromosome 18 
is the smallest autosomal chromosome measuring 244,177 
bp.
Perfect microsatellites. Table 1 presents the number of 
perfect microsatellites detected in different chromosomes. 
Interestingly, the number of perfect SSRs did not correlate 
with chromosome size. The highest number of perfect micro-
satellites (16743) was found in chromosome 4, despite not 
being a large chromosome (74,864,452 bp, and it ranked 5th in 
size within the turkey genome). The second highest numbers 
were detected on chromosomes 8, 1, 15, and Z, respectively. 
However, significant positive correlation coefficients were 
observed between chromosome size and both total number 
(0.44) and total length (0.457) of perfect microsatellites as 
shown in Table 2. Conversely, the lowest number of perfect 
microsatellite was detected in chromosome 18, where only 
one microsatellite was found. No microsatellites were detec-
ted in chromosome W nor mitochondrial DNA. 

Table 1 also shows the total length of perfect SSRs 
with the highest value for chromosome 4, due to the large 
number of microsatellites detected. This was followed by 
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chromosomes 8 and 1, respectively. Figure 2 illustrate the 
relative abundance of perfect microsatellites across all chro-
mosomes. Chromosome 27 exhibited the highest relative 
abundance with a value of 285.5, followed by chromosome 
13 at 262.4. In contrast, chromsome 18 showed the lowest re-
lative abundance, primarily due to the low number of micro-
satellites detected on that chromosome. This was followed 
by chromosome 24 with a relative abundance of 102.68.

The estimated repeat density values (bp/Mb) in each 
chromosome are shown in Figure 3. The repeat density 
pattern closely mirrors the pattern of relative abundance, 
with chromosome 27 and 13 exhibiting the highest repeat 
densities. In contrast, chromosome 18 had the lowest repeat 
density.

The overall distribution of SSR repeat types is presented 
in Figure 4, mononucleotide repeats were highly frequent, 
accounting for 63% of the total detected SRRs, followed 
by tetranucleotide repeats (14%), and dinucleotide (11%). 
Trinucleotide, pentanucleotide, and hexanucleotide repeats 
were less common, each making up less than 10% of the 
total. The number of imperfect microsatellite repeats de-
tected per chromosome is presented in Table (3). Notably, 
only one mononucleotide microsatellite was detected in 
chromosome 18. Excluding chromosome 18, the highest 
number of mononucleotide microsatellite was detected in 
chromosomes 4, while the lowest was detected on chromo-
some 27. Chromosome 4 also had the highest dinucleotide, 
trinucleotide, tetranucleotide, pentanucleotide, and hexa-
nucleotide repeats. In contrast, chromosomes 28, 29, and 27 
had the lowest numbers of dinucleotide, trinucleotide, and 
tetranucleotide repeats, respectively.

Chr01
Chr02
Chr03
Chr04
Chr05
Chr06
Chr07
Chr08
Chr09
Chr10
Chr11
Chr12
Chr13
Chr14
Chr15
Chr16
Chr17
Chr18
Chr19
Chr20
Chr21
Chr22
Chr23
Chr24
Chr25
Chr26
Chr27
Chr28
Chr29
Chr30
Z
W
MT

Fig. 1. Ideogram of the turkey genome
Fig. 1. Ideograma del genoma del pavo.

Imperfect microsatellites. Table 1 presents the number of 
imperfect microsatellites detected across different chromo-
somes. The highest number (68202) was detected in chromo-
some 4 (Figure 2). The second highest counts were detected 
on chromosomes 8, 1, 15, and Z, respectively. On the other 
hand, chromosome 18 had the lowest count with only 15 im-
perfect microsatellites detected. These results have a similar 
trend to those obtained for perfect microsatellites.

Table 1 also presents the total length of imperfect SSRs 
with the highest value observed on chromosome 4, due 
to the large number of microsatellites detected. This was 
followed by chromosomes 8 and 1, respectively. Figure 2 
depicts the relative abundance of imperfect microsatellites 
across all chromosomes. Chromosome 27 exhibited the 
highest relative abundance reaching 1,113.54, followed by 
chromosome 13 at 1,030.26. In contrast, chromosome 29 had 
the lowest relative density. Significant positive correlation 
coefficients were obtained between chromosome size and 
both total number (0.432) and total length (0.441) of imper-
fect microsatellites as shown in Table 2. Similar to perfect 
microsatellites, no imperfect microsatellites were obtained 
in chromosome W or in the mtDNA. 

The estimated repeat density values (bp/Mb) of each 
chromosome are shown in Figure 3. The pattern of repeat 
density closely mirrors that of relative abundance, with chro-
mosomes 27 and 13 exhibiting the highest repeat densities. 
In contrast, chromosome 18 had the lowest repeat density.

The overall distribution of the type of detected imper-
fect SSR repeats is presented in Figure 4. Mononucleotide 
repeats were the most frequent and accounting for 42 % of 
the total SSRs detected, followed by trinucleotide repeat (29 
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%), dinucleotide (15 %), and tetranucleotide (10 %). Penta-
nucleotide and hexanucleotide repeats were less frequent, 
each accounting for less than 5 %. The number of imperfect 
microsatellite repeats detected per chromosome is shown in 
Table 3. The highest numbers of mononucleotide microsate-
llites was detected on chromosomes 8, while the lowest was 
found on chromosome. Similar to the results obtained for 
perfect microsatellites, the highest numbers of dinucleotide, 
trinucleotide, tetranucleotide, pentanucleotide, and hexanu-
cleotide repeats were observed in chromosome 4. However, 

Table 1. The summary information of different microsatellite types.
Tabla 1. Resumen de información de diferentes tipos de microsatélites.

Perfect SSR Imperfect SSR

Chr
Total number 

of perfect 
SSRs

Total length 
of perfect 

SSRs
Relative abundance Relative 

density

Total 
number of 
imperfect 

SSRs

Total length 
of imperfect 

SSRs
Relative abundance Relative 

density

1 4610 80986 246 4320 18445 546084 983.9 29128

2 2131 34285 196 3156 9669 261983 889.9 24113

3 2216 38855 240 4216 9061 269405 983.2 29234

4 16743 271480 240 3896 68202 1939960 978.7 27837

5 1120 17626 192 3017 5264 144004 901 24649

6 1129 18470 226 3690 4817 135581 962.4 27090

7 320 5459 180 3079 1482 41222 835.9 23249

8 6927 109015 203 3195 31039 847657 909.6 24839

9 184 3597 148 2891 1103 31471 886.5 25294

10 642 10265 223 3570 2733 77480 950.5 26945

11 177 3167 153 2740 934 25310 808.1 21898

12 174 2969 148 2531 1134 31925 966.6 27211

13 249 4202 263 4436 976 27770 1030 29314

14 164 2877 172 3017 755 21227 791.7 22260

15 2960 48817 173 2850 15055 409929 878.8 23929

16 225 3465 152 2339 1247 32134 841.9 21695

17 190 3166 210 3506 792 21741 877 24075

18 1 12 61.9 742.4 15 498 928.1 30811

19 89 1393 178 2790 448 12460 897.1 24952

20 66 1034 125 1954 370 9806 699.3 18534

21 86 1622 178 3360 470 13679 973.5 28332

22 81 1386 121 2075 545 14215 815.9 21279

23 128 1880 193 2831 619 15498 932.1 23338

24 371 7135 103 1975 3300 90183 913.3 24959

25 102 1876 183 3363 549 17922 984.2 32130

26 101 1639 158 2567 547 14707 856.6 23031

27 20 337 286 4811 78 1907 1114 27225

28 31 530 125 2138 204 5655 822.8 22807
29 36 634 179 3156 128 3587 637.2 17856
30 42 655 189 2941 224 6056 1006 27193

Z 1190 20969 187 3299 5814 168594 914.6 26521

Table 2. Correlation coefficient of chromosome size with total number and 
total length of perfect and imperfect SSRs 
Tabla 2. Coeficiente de correlación del tamaño de los cromosomas con el 
número total y longitud de SSRs perfectos e imperfectos.

Variable 1 Variable 1
Correlation coefficient

Perfect SSR Imperfect SSR

Total number of SSRs Chromosome Size 0.440 432

P < 0.013 0.010

Total length of SSRs Chromosome Size 0.475 0.441
P < 0.010 0.013
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Fig. 2. The relative abundance of perfect and imperfect microsatellites detected in different chromosomes of turkey genome.
Fig. 2. Abundancia relativa de los microsatélites perfectos e imperfetos detectados en diferentes cromosomas del genoma del pavo.

Fig. 3. The repeat density of perfect and imperfect microsatellites detected in different chromosomes of turkey genome.
Fig. 3. Densidad de repetidos perfectos e imperfectos de microsatélites detectados en diferentes cromosomas del genoma del pavo.

chromosome 18 had the lowest numbers for dinucleotide, 
trinucleotide, and tetranucleotide repeats.
Designed Primers. A total of 121248 SSR primers were desig-
ned. A list of these primers has been deposited in a public re-
pository and can be accessed via the following link: (https://
github.com/mosthamed/SSR-primers-Meleagris-gallopavo-.
git).

DISCUSSION
Genome-wide studies offer valuable insights into the evo-
lutionary forces that shape the distribution and diversity 

of microsatellites (Pannebakker et al., 2010), enhancing our 
understanding of genome architecture. Microsatellites are a 
significant component of the genome in all organisms, which 
their abundance closely correlating to genome size (Akemi et 
al., 2012). However, the biological significance of this geno-
mic regions remains poorly understood . A thorough analysis 
of microsatellites is essential for uncovering their functional 
roles (Gochi et al., 2023). Variations in their abundance, varia-
tion and repeat types are key factors that contribute to their 
functions. This study presents a genome-wide analysis of 
microsatellite distribution in the turkey genome. 
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Table 3. The distribution of microsatellite repeats on the different chromosomes in turkey genome.
Tabla 3. Distribución de repetidos de microsatélites en los diferentes cromosomas del genoma del pavo.

Motif

Perfect SSR Imperfect SSR

Chr Mono Di Tri Tetra Penta Hexa Mono Di Tri Tetra Penta Hexa

1 2640 452 370 820 256 72 7776 2804 4995 2150 570 150

2 1444 225 161 233 63 5 3954 1428 3083 934 225 45

3 1249 233 185 380 133 36 3860 1361 2404 1048 302 86

4 10960 1707 1184 2252 555 85 31205 9709 18009 7148 1713 418

5 764 110 72 141 31 2 2173 759 1648 539 124 21

6 746 126 71 132 49 5 2159 745 1302 442 128 41

7 193 38 37 25 22 5 508 208 553 142 55 6

8 4661 731 498 833 182 22 13208 4551 9348 3094 680 158

9 101 22 18 26 16 1 299 152 512 102 35 3

10 425 65 43 88 19 2 1130 392 831 292 78 10

11 109 19 7 31 7 4 341 129 339 94 25 6

12 93 28 18 20 13 2 279 169 553 74 51 8

13 155 24 22 34 12 2 445 116 270 116 23 6

14 90 15 19 27 10 3 237 116 284 79 27 12

15 1926 315 242 355 118 24 5526 2172 5476 1429 365 87

16 157 23 18 20 6 1 492 168 435 119 29 4

17 108 33 16 25 8 0 277 143 279 71 19 3

18 1 0 0 0 0 0 4 0 8 2 1 0

19 64 6 7 8 4 0 177 67 148 41 13 2

20 41 8 6 9 1 1 107 71 139 44 7 2

21 45 8 13 14 4 2 126 61 215 45 21 2

22 47 15 3 10 4 2 119 100 265 45 13 3

23 93 15 7 12 1 0 261 90 208 51 9 0

24 17 197 64 57 28 8 1130 452 1304 297 94 23

25 43 9 17 17 13 3 139 76 242 48 32 12

26 63 15 9 11 3 0 174 93 206 52 17 5

27 4 9 4 2 1 0 15 23 30 6 4 0

28 17 4 3 4 2 1 48 34 95 19 7 1

29 22 5 1 7 1 0 46 23 38 19 2 0

30 27 4 4 6 1 0 96 31 62 27 8 0

Z 607 137 101 236 97 12 2314 905 1670 676 201 48

Compared to traditional methods of microsatellite 
identification, in silico genome mining offers several advan-
tages, making it a preferred approach in modern genomics 
research. The in silico approach is highly efficient and 
cost-effective, allowing for large genomes to be scanned 
for potential microsatellite regions without the need for 
extensive wet lab experiments. By leveraging computational 
tools and databases, vast amounts of data can be generated 

quickly. This approach is particularly valuable in fields such 
as biodiversity studies, conservation genetics, and breeding 
programs. Additionally, the precision of computational algo-
rithms ensures high accuracy in marker identification, redu-
cing the risk of errors that can occur with manual methods 
(Safaa et al., 2023). 

In the current study, we examined the distribution of 
perfect microsatellites across different chromosomes. The 
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data revealed no correlation between the number of perfect 
SSRs and chromosome size. Notably, chromosome 4, which 
ranks fifth in size in the turkey genome, has the highest num-
ber of perfect microsatellites. Chromosomes 8, 1, 15, and Z 
also showed high numbers of SSRs. Similarly, chromosome 
4 also exhibited the highest number of imperfect microsate-
llites. Previous studies (Zhao et al., 2011; Duhan et al., 2023) 
have generally found that microsatellite density increases 
with genome size. 

To better understand this trend, we calculated the co-
rrelation coefficients between chromosome size and both 
the total number and total length of detected microsatellites 
for the two types. Moderate positive correlations were obser-
ved, suggesting that the abundance of SSRs can vary widely 
across animal species, of which mammals tend to have more 
SSRs than avian species due to the differences in chromo-
some size. However, further studies should investigate the 
relationships between the number of chromosomes and the 
SSR number.

Previous research has reported different levels of corre-
lations between genome size and the number of detected 
SSRs. For example in insects, the number of SSRs is positively 
correlated with genome size, with a correlation coefficient of 
0.499, similar to our findings. However, the correlation bet-
ween SSR density and genome size in insects was negative 
at −0.228 (Ding et al., 2017). In contrast, bovid species show 
a very high positive correlation (0.980) between SSR number 
and chromosome size (Qi et al., 2015). Similarly, in macaque 
species, the correlation between chromosome size and SSR 
number was positive, while the correlation with SSR density 
was negative (Liu et al., 2017).

In most vertebrates, mono- and di-nucleotide motifs are 
the most abundant microsatellite motifs (Zhao et al., 2011; 
Wattanadilokchatkun et al., 2022; Kumpatla and Mukhopad-
hyay, 2005). In the present study, mono-nucleotide motifs 

were the most prevalent for both perfect and imperfect SSRs. 
However, the di-nucleotide motifs ranked 3rd, following tetra-
nucleotide and trinucleotide motifs for perfect and imperfect 
SSRs, respectively. In ducks, dinucleotide motifs were found 
to be the most abundant, accounting for over 50% of the 
total SSR motifs.

This finding contradicts the previously observed positi-
ve relationship between microsatellite density and genome 
size. The results of the current study suggest that the factors 
influencing microsatellite distribution may be more complex 
than a simple linear correlation with genome size. Further 
research is required to fully elucidate the evolutionary pro-
cesses shaping microsatellite characteristics in avian species 
and across boarder range of taxa.

CONCLUSIONS
In the current study, we conducted a genome-wide analysis 
of the distribution and density of microsatellites in the turkey 
genome. While the findings provides a foundation for future 
studies into the role of microsatellites in gene regulation, fur-
ther investigation is needed to understand how these SSRs 
are distributed across different regions of the genome, inclu-
ding both coding and non-coding areas. A large set of SSR 
markers was identified across the entire genome, which will 
be instrumental for linkage mapping and will significantly 
improve research in turkey genetics. This extensive characte-
rization of SSR markers not only enhances our understanding 
of turkey genetics but also creates a foundation for further in-
vestigations into their functional role in genomic regulation.

ETHICS APPROVAL
This work was approved (CU/I/F/32/23) by the Institutional 
Animal Care and Use Committee at Cairo University (CU-
IACUC).

Fig. 4. The frequency of the detected perfect and imperfect SSRs in turkey genome.
Fig. 4. Frecuencia detectada de los SSRs perfectos e imperfectos en el genoma del pavo.
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