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ABSTRACT

Ivermectin has been shown in vitro that reduces SARS-CoV-2
replication in infected cells through interactions with import-
ins a, however, the exact mechanism of action s still unknown.
The objective of this study was to analyze binding affinities of
ivermectin, SARS-CoV-2 nucleocapsid (N) and ORF6 proteins,
to isoforms of human importins a using molecular docking
methods. Crystallized structures of importins a from Protein
Data Bank (PDB) and AlphaFold Protein Structure Database
were used, viral proteins were modeled using AlphaFold 2.
Molecular docking simulations were performed between hu-
man importin a isoforms, ivermectin, N and ORF6 proteins,
employing Broyden-Fletcher-Goldfarb-Shanno, FTDock and
pyDockRST algorithms. Obtained data evidenced that viral
proteins of SARS-CoV-2 and ivermectin showed favorable
binding affinities to ARM2-ARM4 domains (major binding
site), sharing binding affinities to the same active residues.
These results suggest that ivermectin shares the same active
site on the a-importins as the SARS-CoV-2 N and ORF6 prote-
ins, demonstrating a potential molecular target for research
in the development of new antiviral drugs against COVID-19.
Keywords: Antiparasitic agent, cheminformatics, COVID-19,
karyopherins, viral proteins.

RESUMEN

Se ha demostrado in vitro que la ivermectina reduce la re-
plicacion del SARS-CoV-2 en células infectadas mediante la
interaccién con importinas a, sin embargo, alin se desconoce
el mecanismo exacto de accion. El objetivo de este estudio
fue analizar afinidades de unién de la ivermectina, la nucleo-
capside (N) y las proteinas ORF6 del SARS-CoV-2 con isofor-
mas de importinas a humanas utilizando métodos de aco-
plamiento molecular. Se utilizaron estructuras cristalizadas
de importinas a de Protein Data Bank (PDB) y de la AlphaFold
Protein Structure Database, y las proteinas virales se modela-
ron utilizando AlphaFold 2. Se llevaron a cabo simulaciones
de acoplamiento molecular entre isoformas de laimportina a
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humana, la ivermectina, y las proteinas N y ORF6, empleando
los algoritmos Broy-den-Fletcher-Goldfarb-Shanno, FTDock
y pyDockRST. Los datos obtenidos evidenciaron que las
proteinas virales del SARS-CoV-2 y la ivermectina presentan
afinidades de unién favorables a los dominios ARM2-ARM4
(sitio principal de unién), compartiendo afinidades de inte-
raccién con los mismos residuos activos. Estos resultados
sugieren que la ivermectina comparte el mismo sitio activo
en las importinas a que las proteinas N y ORF6 de SARS-
CoV-2, demostrando una potencial diana molecular para la
investigacion en el desarrollo de nuevos farmacos antivirales
contra la COVID-19.

Palabras clave: Antiparasitario, quimioinformatica, CO-
VID-19, carioferinas, proteinas virales.

INTRODUCTION

SARS-CoV-2 genome analysis has revealed between 79.6 %
to 80 % of genetic identity with SARS-CoV, showing simi-
larities in proteins encoding sequences and viral infection
mechanism (Andersen et al., 2020; Shereen et al., 2020; Wu
etal., 2020; Zhou et al., 2020). Genomic study showed a close
phylogenetic relationships between SARS-CoV-2 and SARS-
CoV genomes, suggesting a similar evolutionary origin,
however, SARS-CoV-2 has better host adaptation (Chen et al.,
2021).

Keys proteins for a successful replication have been
reported in both viruses, the nucleocapsid protein (N) and
ORF6 protein (Kopecky-Bromberg et al, 2007; Gao et al.,
2021). Nucleocapsid protein plays crucial roles such as viral
genome protection and traffic to exocytic vesicles, but the
crucial function is blocking interferon-mediated antiviral
response (Shereen et al., 2020; Li et al., 2020; Igbal et al., 2020;
Kannan et al., 2020; Kopecky-Bromberg et al., 2007; Qinfen et
al., 2004; Rowland et al., 2005; Timani et al., 2005; Surjit et al.,
2004). A recent study suggests as a possible subcellular loca-
lization for SARS-CoV-2 N protein, the nucleus of the host cell
(Gao et al., 2021). The presence of N proteins in the nucleus/
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nucleolus of infected cells has been described in SARS-CoV
infection, due to structural exposure of nuclear localization
sequences (NLS) in regions of the C-terminal domain, which
is recognized by importins a (Timani et al., 2005; He et al.,
2004; Wulan et al., 2015; Wurm et al., 2001).

ORF6 protein in coronaviruses is intimately related to
importins a functions, specifically to importin a1, but the
presence of this protein inside the host nucleus has not
been evidenced yet (Gordon et al., 2020; Frieman et al., 2007;
Hussain and Gallagher, 2010; Zhao et al., 2009). ORF6 and N
proteins are essential for the inhibition of the interferon sig-
naling pathway during infection with both viruses (SARS-CoV
and SARS-CoV-2) (Frieman et al., 2007; Li et al., 2020; Liu et al.,
2014; Ye et al., 2008; Zhao et al., 2009).

Importins a are responsible to NLS recognition in pro-
teins that will be transported into the nucleus, playing an
important role mediating antiviral responses through STAT1/
STAT2 pathway (Pumroy and Cingolani, 2015). Several studies
have shown that viruses are able to use this cellular transport
pathway, specifically to import viral proteins into the nucleus
and to block antiviral response mechanism of infected cells
(Gayozo and Rojas, 2021; Pumroy and Cingolani, 2015).

An in vitro study has shown that ivermectin is able to
decrease the SARS-CoV-2 viral genome load about 5000 fold
in 48 hours post-treatment, the researchers suggest via bloc-
kage in the trafficking of viral proteins between nucleoplasm
and cytoplasm (Caly et al., 2020). One of the key mechanisms
of action reported for ivermectin molecules against SARS-
CoV-2 infection is the binding affinity to importin a/B1
heterodimers, as well as for other karyopherins (KPNA/KPNB)
receptors, inhibiting viral protein transport into the nucleus
of the infected cell, however, it is still unknown how protein
transport inhibition acts against SARS-CoV-2 proteins trans-
location (Zaidi and Dehgani-Mobaraki, 2022).

Due to this, protein-protein and protein-ligand molecu-
lar docking simulation were performed between ivermectin,
N and ORF6 proteins of SARS-CoV-2, to human importins a
isoforms as main target. In addition to this, active residues,
molecular interactions in complexes were identified to un-
derstand the interactions modes between ivermectin, SARS-
CoV-2 N and ORF6 proteins to importins a isoforms encoded
in human genome, and to recognize possible molecular tar-
gets for the development of new antivirals against COVID-19.

MATERIAL AND METHODS

Analysis of similarities between N and ORF6 proteins
sequences

Nucleocapsid amino acid sequences of SARS-CoV-2, SARS-
CoV, MERS-CoV, HCoV-0C43, HCoV-NL63, HCoV-HKU1, HCoV-
229E and the ORF6 protein sequences of SARS-CoV-2 and
SARS-CoV, belonging to Coronaviridae family, were obtained
from the NCBI (National Center for Biotechnology Information,
https://www.ncbi.nlm.nih.gov/) database (Table 1). These
sequences were selected taking into account the infectious
capacity of the most common coronaviruses that affect hu-
mans and the degree of conservation of the sequences, fo-
llowing the methodology proposed by Ibrahim et al. (2020).
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Table 1. Accession code of N and ORF6 proteins sequences.
Tabla 1. Cédigo de accesidn de las secuencias de las proteinas N y ORF6.

Virus Accession code Database

Nucleocapsid protein

SARS-CoV-2 QHO62110.1 NCBI (Protein)
SARS-CoV ABA02277.1 NCBI (Protein)
MERS-CoV AZK15907.1 NCBI (Protein)
HCoV-0C43 QBP84763.1 NCBI (Protein)
HCoV-NL63 ABE97134.1 NCBI (Protein)
HCoV-HKU1 ARU07581.1 NCBI (Protein)
HCoV-229E ARU07605.1 NCBI (Protein)
ORF6 Protein

SARS-CoV-2 QIV65092.1 NCBI (Protein)
SARS-CoV NP_828856.1 NCBI (Protein)

Relationships between proteins sequences were de-
termined by phylogenetic reconstruction, using neighbor
joining method with a bootstrap of 1000 replicates and
Poisson substitution model using MEGA X software (Kumar
et al, 2018). Alignment between amino acid sequences
were performed using Clustal Omega algorithm (Sievers
and Higgins, 2014), and BLOSUM 62 matrix between SARS-
CoV-2 and SARS-CoV sequences to determine identity and
similarity between them and record the conserved regions,
for it EMBL-EBI tools (https://www.ebi.ac.uk/jdispatcher/psa)
(Li et al., 2015) and ESPript 3.0 software were used (Robert
and Gouet, 2014).

Detection of nuclear localization sequences (NLS) and
hydrophobicity analysis
The search for putative NLS sequences, according to animal
cell code, in the SARS-CoV-2 N and ORF6 proteins sequences
was performed using WoLF PSORT tool (https://wolfpsort.
hgc.jp/) (Horton et al.,, 2007), in order to identify possible
putative regions targeting importins a (Fang et al., 2017).
Hydrophobic content analysis of ORF6 protein of SARS-
CoV-2 and SARS-CoV was performed calculating GRAVY
hydrophobicity index and constructing hydrophobicity plot
according to Kyte and Doolittle index (Kyte and Doolittle,
1982). This analysis was performed in order to characterize
the ORF6 protein of both viruses and to establish similarities
in terms of possible transmembrane regions with a-helix
structures (Fry et al., 2021).

Molecular docking protein-protein simulations
Molecular modeling of ORF6 protein structure (NCBI:
QIV65092.1) was performed using Alphafold 2 (Jumper et al.,
2021; Mirdita et al., 2022). Modeled structure was validated
using MolProbity 4.5.1, PROCHECK and Chimera v. 1.16 soft-
ware (Laskowski et al., 1993; Pettersen et al., 2004; Williams et
al., 2018). The acceptance criteria for statistical and structural
values are described in the Supplementary Figure S1.

The molecular structure of SARS-CoV-2 N protein
(PDB: 8FD5), and importins a isoforms of the a1 subfamily
(isoforms a1 and a8), a2 subfamily (isoforms a3 and a4) and
a3 subfamily (isoforms a5, a6 and a7) were obtained from
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Protein Data Bank RCSB database (https://www.rcsb.org/)
and AlphaFold Protein Structure Database (https://alphafold.
ebi.ac.uk/) (Berman et al., 2000; David et al., 2022; Varadi et al.,
2022) (Table 2).

Molecular protein-protein docking simulations were
performed employing Ibrahim et al. (2020) bioinformatic
workflow, these assays were carried out between N protein
and importin a isoforms, and between ORF6 protein and iso-
form importin a1, for it were used pyDock 3 software (Cheng
et al., 2007). To select the complex with favorable binding
affinities, were employed electrostatic, desolvation and van
der Waals energies values (Cheng et al., 2007; Grosdidier
et al., 2007; Jiménez-Garcia et al., 2013; Pallara et al., 2017).
Water molecules, ions and ligands were firstly removed from
protein structures (Chook and Blobel, 2001).

Simulations were performed using receptor-ligand
model generated by FTDock (Fourier Transform Dock) and
pyDockRST algorithms (Chelliah et al., 2006; Cheng et al.,
2007; Gabb etal., 1997; Grosdidier et al., 2007; Jiménez-Garcia
et al., 2013). Firstly, polar hydrogens were added at physiolo-
gical pH 7.4, and also partial charges were incorporated to
the protein structures using CHARMm force field, using the
Discovery Studio Visualizer v. 20 software (Biovia Dassault
Systemes, USA). Restraints distances methods were emplo-
yed in importins a active sites (major binding site and minor
binding site) corresponding to Armadillo (ARM) domains
(ARM2, ARM3, ARM4, ARM6, ARM7, ARM8) (Chook and Blo-
bel, 2001).

Resulting complexes were subjected to structural refine-
ment process using 14.4 ps molecular dynamics simulation
methods with GalaxyRefineComplex software (Heo et al.,
2016). Free binding energy (AG) of complexes was calculated
at 37° C (310.15 K) using PRODIGY software (Vangone et al.,
2019).

Identification of active residues and intermolecular
forces was performed using tridimensional (3D) and bidi-
mensional (2D) representations, employing CHARMm force
fields method with Discovery Studio Visualizer v. 20 software
(Biovia Dassault Systemes, USA).

Table 2. Structures of the importin a isoforms used in this research.

Tabla 2. Estructuras de las isoformas de importina a utilizadas en esta
investigacion.

Subfamily Isoforms Accession code Database
. Protein Data Bank
: Importin al 4WV6 RCSB
a
. AlphaFold Protein
[ESlce AR Structure Database
. Protein Data Bank
Importin a3 4UAE RCSB
a2 AlphaFold Protei
8 phaFold Protein
Importin a4 QU Structure Database
. AlphaFold Protein
LHESLIS RS Structure Database
. AlphaFold Protein
a3 Importin a6 015131 Structure Database
I rae i 4UAD Protein Data Bank

RCSB

Molecular docking protein-ligand simulations

The molecular structure of ivermectin (ivermectin B1a)
(PubChem CID Code: 6321424) was obtained from PubChem
Database (https://pubchem.ncbi.nim.nih.gov/) (Kim et al.,
2016).

Energetic minimization of ivermectin structure was
performed with Merck Molecular Force Field 94 (MMFF94)
method, using for it, five steps per update with conjugate
gradient algorithm, a total cycle number of 50000 steps,
an energy convergence criteria of 0.001 kcal.mol-".A-", also
partial charges with Gasteiger force field and polar hydrogen
atoms at physiological pH of 7.4 were added using Avogadro
2 software (Hanwell et al., 2012) and Chimera v. 1.16 software
(Pettersen et al., 2004).

Molecular docking simulations between ivermectin
and importin a isoforms were performed in a grid with di-
mensions of 43x73x78 A3, 50 iterations in simulations and
an exhaustiveness of 16, using PyRx software (Dallakyan and
Olson, 2015) and Autodock Vina software (Trott and Olson,
2010).

Visualization of complexes, identification of binding site,
active residues and intermolecular forces was performed
employing CHARMm force fields and Momany-Rone partial
charge, for it Discovery Studio Visualizer v. 20 software (Bio-
via Dassault Systemes, USA) was used.

RESULTS AND DISCUSSION

N proteins sequences analysis

Phylogenetic reconstruction reveals a close relationship
between the SARS-CoV-2 N protein and SARS-CoV N protein
sequences in a 94 % of the analysis (Figure 1.A).

Results obtained in phylogenetic reconstruction are
in agreement with genetic similarity reported in another
research where an identity of 79.6 % to 80 % between both
genomes was found (Ceraolo and Giorgi, 2020; Lu et al., 2020;
Wu et al.,, 2020; Zhou et al., 2020). Kannan et al. (2020) and
Ceraolo and Giorgi (2020) also described a high percentage
of identity between amino acid sequences of nucleocapsid
protein of SARS-CoV-2 and SARS-CoV, these authors suggest
a 90 % to 90.52 % identity between these viral genomes,
differences were registered in residues Gly25, Ser26, Asp103,
Ala217 and Thr334, which were part of 380 residues substitu-
ted in the SARS-CoV-2 proteome (Wu et al., 2020) (Figure 2).

This sequences relationships suggests structural and
functional similarities such as the ability to suppress Inter-
feron Stimulation Response Element (ISRE) gene expression,
that was also reported for other coronaviruses (Li et al., 2020;
Kannan et al., 2020; Ceraolo and Giorgi, 2020; Chang et al.,
2014; Timani et al., 2005) (Figure 1.A).

However, the analysis of SARS-CoV-2 N protein sequen-
ce showed the presence of a monopartite NLS sequence pat
4 "KKPR" (Lys-Lys-Pro-Arg) between residues 256-259, and
a monopartite sequence of pat 7 “PKKDKKKK” (Pro-Lys-Lys-
Asp-Lys-Lys-Lys-Lys) between residues 368-375 (Figure 1.B).

The NLS sequences detected in SARS-CoV-2 N protein
are similar to those described in SARS-CoV N protein, howe-
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Figure 1. A. Phylogenetic reconstruction from amino acid sequences of nucleocapsid proteins. B. Representation of SARS-
CoV-2 Nucleocapsid protein and SLN sequences, NTD: N-Terminal Domain, CTD: C-Terminal Domain.

Figura 1. A. Reconstruccion filogenética a partir de las secuencias de aminoacidos de las proteinas de la nucleocapside. B.
Representacion de la proteina nucleocépside del SARS-CoV-2 y secuencias SLN, NTD: Dominio N-Terminal, CTD: Dominio
C-Terminal.

Figure 2. Multiple amino acid sequence alignment of viral nucleocapsid protein. NLS pat4 sequences and NLS
pat7 sequences highlighted.

Figura 2. Alineacion multiple de secuencias de aminodcidos de la proteina nucleocépside viral. Secuencias NLS
pat4 y NLS pat7 resaltadas.
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ver, in SARS-CoV a third NLS monopartite pat 7 sequence was
recorded next to N-terminal domain between residues 38 to
44, which is absent in SARS-CoV-2 N protein due to substitu-
tion of residue 38 for a serine. The presence of NLS sequence
next to the N-terminal domain of the SARS-CoV N-protein is
functional, leading an exogenous protein into the nucleus,
however it seems to be not relevant for the success of viral
infection, becoming more important NLS sequences close to
the C-terminal domain (Timani et al., 2005).

The similarity between SARS-CoV and SARS-CoV-2 N
proteins is clearly visible in the multiple alignment represen-
tation, where a 90.5 % of identity and a 94.3 % of similarity
between these two sequences were recorded (Figure 2).

Previous studies reported that SARS-CoV N proteins
are cleaved during activation of caspases 3 and 7, that in-
duce apoptosis in infected cells, generating fragments with
functional NLS sequences that facilitate translocation of
these fragments into the nucleus/nucleolus (He et al., 2004;
Rowland et al., 2005; Timani et al., 2005).

It is important to mention that proteins fragments
translocations into the nucleus occurs in low proportions at
advanced stages of SARS-CoV infection, and that because the
multimerization of N proteins blocks the cleavages (He et al.,
2004; Timani et al., 2005). The presence of NLS sequences in
SARS-CoV-2 N protein was also described by Gao et al. (2021).

Protein-protein molecular docking simulations of N protein
and importin aisoforms

Molecular docking analysis evidenced binding affinities of
the N proteins (NLS pat4, NLS pat7) to the ARM2-ARM4 do-
mains of the evaluated importins a isoforms, these domains
correspond to the major binding site, a NLS recognition site
in importins (Baumhardt and Chook, 2018; Chook and Blobel,
2001) (Figure 3, Figure 4). It is important to denote that the
entry of peptides/proteins with NLS sequences into the nu-
clear compartment occurs by classical importin a mediated
pathway, NLS sequences possess the ability to interact with
ARM domains of importins a (Chook and Blobel, 2001).

Figure 3. Complexes of SARS-CoV-2 protein N (NLS pat4) and a importins isoforms. A. Importin al1. B. Importin a8. C. Importin a3. D. Importin a4. E. Importin

a5. F. Importin a6. G. Importin a7.

Figura 3. Complejos de la proteina N (NLS pat4) del SARS-CoV-2 y las isoformas a de las importinas. A. Importina al. B. Importina a8. C. Importina a3. D.

Importina a4. E. Importina a5. F. Importina a6. G. Importina a7.
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Figure 4. Complexes of SARS-CoV-2 protein N (NLS pat7) and importin a isoforms. A. Importin al1. B. Importin a8. C. Importin a3. D. Importin a4. E. Importin

a5. F. Importin a6. G. Importin a7.

Figura 4. Complejos de proteina N (NLS pat7) de SARS-CoV-2 e isoformas de importina a. A. Importina al. B. Importina a8. C. Importina a3. D. Importina a4.

E. Importina a5. F. Importina a6. G. Importina a7.

Resulting complexes between importins a isoforms and
N protein (NLS pat4 and pat7) showed free binding energy
values (AG) ranging -10.0 to -6.3 kcal.mol”, where the NLS
pat7 sequence demonstrated the most favorable energy
value, specifically to importin a3 and importin a5 (Figure 3.B,
Supplementary Table S1).

Active residues in complexes formed by N protein and
isoforms of al subfamily were Phe138, Trp142, Asn146,
Ser149, His177, Glu180, Trp184, Asn188, Asn228 in importin
al, and Arg95, GIn100, Glu107, Trp136, Ser143, Glu180,
Asn182, Trp231, Glu256, Asp260, Glu266, Asp270, Trp273 in
importin a8, residues that interact with NLS pat4 sequences
through hydrogen bonds, unconventional interactions
between a polarized carbon atom and hydrogen atom,
interactions between Pi orbitals and donors groups of hy-
drogen bonds. The formation of electrostatic attractions and
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hydrophobic interactions were also identified (Figure 3.A,B,
Supplementary Figure S2, Supplementary Figure S3, Supple-
mentary Table S1).

Residues Glu107, Trp142, Asn146, Ala176, Glu180,
Trp184, Ala222, Tyr225, Trp231, Glu266, Asp270, Trp273 of
importin a1, and residues Ser99, Glu101, Pro104, Trp136,
Ser143, Arg217, Asp260, Trp263, Glu174, Trp178, Asn182,
Trp221, Asn225 of importin a8, interact by hydrogen bonds,
carbon hydrogen bonds, Piinteractions with hydrogen bonds
donors, hydrophobic and electrostatic interactions with the
NLS pat7 sequences (Figure 4.A,B, Supplementary Figure S2,
Supplementary Figure S3, Supplementary Table S1).

Complexes formed by a2 subfamily isoforms revealed
as active residues to Leu99, Asp102, Arg103, Phe133, Trp137,
Asn141, Ser144, Trp179, Glu175, Asn219, Trp222 in importin
a3, Leu99, Ser100, Asp102, Phe133, Trp137, Ser144, Asn172,
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Glu175, Trp179, Arg218, Asn219, Trp222, Asp261 in importin
a4, all of them interacting with the NLS pat4 sequences,
exhibiting hydrogen bonds, carbon hydrogen bonds, elec-
trostatic and hydrophobic interactions (Figure 3.C,D, Supple-
mentary Figure S2, Supplementary Figure S3, Supplementary
Table S1).

Also registered as active residues were Trp179, Asn183,
Gly186, Asp187, Asn219, Trp222, Asn226, Arg229, Asp232,
Trp137, Asn141, Ala143, Gly145, Ser147, Asn257, Val260,
Trp264, Tyr268 in importin a3, and Ala143, Gly145, Ser147,
Trp179, Asn183, Asp187, Asn219, Trp222, Arg229, Asn257,
Val260, Trp264, Tyr268 in importin a4, which interact with
NLS pat7 sequences (Figure 4.C,D, Supplementary Figure S2,
Supplementary Figure S3, Supplementary Table S1).

Complexes registered with a3 subfamily isoforms
showed as active residues to Ser111, Glu113, Pro116, Trp149,
Ala155, Ser156, Gly157, Trp191, Asn195, Asp199, Asn231,
Trp234, Asp273 of importin a5, and Pro112, Asn151, Ser154,
Trp189, Gly192, Asn193, Asp197, Asn229, Trp232 of importin
a6, and Glu111, Ser154, Trp189, Asn193, Asp197, Arg228,
Trp232 in importin a7, all these residues interact with NLS
pat4 sequences by hydrogen bonds, carbon hydrogen
interactions, electrostatic attractions and hydrophobic inte-

ractions (Figure 3.EF,G, Supplementary Figure S2, Supple-
mentary Figure S3, Supplementary Table S1).

Also, residues Ser111, Glu113, Pro116, Trp149, Asn153,
Ser156, Asp184, Glu187, Trp191, Asn195, Gly198, Trp234,
Asn238, Asp273, Trp276 in importin a5, Ser154, Asn193,
Thr225, Arg228, Asn229, Trp232, Asp271, Lys309 in importin
a6, Trp147, Thr150, Asn151, Ser154, Glu185, Trp189, Arg223,
Trp232, Asn236, Asp267, Trp274 in importin a7, were detec-
ted in interactions with NLS pat7 sequences (Figure 4.E,FG,
Supplementary Figure S2, Supplementary Figure S3, Supple-
mentary Table S1).

ORF6 proteins sequences analysis

Amino acid sequences of SARS-CoV and SARS-CoV-2 ORF6
proteins showed 66.7 % of identity and 85.7 % of similarity
among them (Figure 5.A).

These proteins present high hydrophobicity scores in
the Kyte and Doolittle scale (Kyte and Doolittle, 1982), evi-
dencing hydrophobic regions in 72.13 % of the SARS-CoV-2
ORF6 protein, suggesting the presence of an a-helix trans-
membrane structure (between residues 1-44) (Hussain and
Gallagher, 2010). The high content of residues with hydro-
phobic properties were evidenced in both proteins, which

Figure 5. A. Alignment of SARS-CoV and SARS-CoV-2 ORF6 protein sequences, importin a1 binding segment highlighted. B-C.
Hydrophobicity plot and index of viral ORF6 according to Kyte & Doolittle (1982). B. SARS-CoV ORF6 protein. C. SARS-CoV-2

ORF®6 protein.

Figura 5. A. Alineacién de las secuencias de las proteinas ORF6 de SARS-CoV y SARS-CoV-2, segmento de unién a importina al
resaltado. B-C. Diagrama de hidrofobicidad e indice de ORF6 viral segun Kyte & Doolittle (1982). B. Proteina ORF6 del SARS-CoV.

C. Proteina ORF6 del SARS-CoV-2.
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could also be verified with GRAVY hydrophobicity index that
showed values of 0.297 and 0.233, respectively (Figure 5.B,C).
The presence of SARS-CoV ORF6 protein in the membrane of
the endoplasmic reticulum (ER)/ Golgi of the infected cell has
been described in previous research; this similarity in terms
of hydrophobicity indicators could suggest the same cellular
localization of SARS-CoV-2 ORF6 and the same mechanism
of action against importins a (Frieman et al., 2007). ORF6
proteins of SARS-CoV was also described with amphipathic
characteristics, this protein mainly acts as antagonist of the
host cell antiviral response and participates in the accelera-
tion of infection kinetics (Frieman et al., 2007; Hussain and
Gallagher, 2010; Liu et al., 2014; Zhao et al., 2009).

Due to their homology and high similarity, these prote-
ins would be sharing functions mainly involved in the inhibi-
tion of ISRE promoter expression, so interferon beta (IFN-B)
function is also affected (Kopecky-Bromberg et al., 2007),
these observations were reconfirmed by Li et al. (2020) who
reported an inhibition of interferon type | signaling pathway.

The complex importin al-ORF6 SARS-CoV-2 protein
showed a favorable free binding energy with a value of -7.7
kcal.mol". This complex demonstrated interaction of ORF6
protein C-terminal domain to the ARM2-ARM4 (major bin-
ding site) domains of importin a1l (Baumhardt and Chook,
2018) (Figure 6).

The active residues registered in importin al were
Trp142, Arg101, Trp184, Arg238, Trp273, Arg315, Trp231,
Ser149, Asn146 belonging to ARM2-ARM4 domains (Figure

6.A). The importin a1-ORF6 complex is stabilized with hy-
drogen bonds, carbon-hydrogen interactions, Pi orbitals
and Sigma orbitals interactions, electrostatic attractions and
hydrophobic interactions (Figure 6.B).

Studies revealed that SARS-CoV ORF6 protein is able to
indirectly block STAT1/STAT2 proteins nuclear translocation,
this occurs by interaction of this viral protein with impor-
tin al, hijacking importin B1 from cytoplasm to ER/Golgi
membrane surface (Frieman et al., 2007; Kopecky-Bromberg
et al, 2007; Liu et al., 2014; Narayanan et al., 2008; Zhao et
al., 2009). As described by Frieman et al. (2007) and Liu et al.
(2014), the C-terminal domain (residues 54-63) of SARS-CoV
ORF6 protein involved in the interaction to importin ai, is
located within a region with similarity to residues 54-61 in
SARS-CoV-2 ORF6 protein (Figure 5.A).

A recent study performed by Miyamoto et al. (2022), has
revealed that SARS-CoV-2 ORF6 protein exhibits antagonistic
effects on interferon mediated antiviral response by blocking
intracellular traffic of STAT1 through interactions between
viral protein and STAT1, and a high binding affinity to impor-
tins a1 of infected cells.

Another research revealed that SARS-CoV-2 ORF6 pro-
tein plays an important role in nucleocytoplasmic traffic,
through an interaction to Rae1:Nup98 complex of the host
cell, this event directly manipulate localization and functions
of nucleoporins causing a damaged nucleocytoplasmic
traffic, promoting the accumulation of RNA transporters
(Addetia et al., 2021; Gordon et al., 2020; Kato et al., 2021).

Figure 6. Complex of importin a1 and SARS-CoV-2 ORF6 protein. A. Full view of ARM domains of importin a1 binding to ORF6. B.

Two-dimensional representation of molecular docking.

Figura 6. Complejo de importina a1y proteina ORF6 del SARS-CoV-2. A. Vista completa de los dominios ARM de la importina a1
uniéndose a ORF6. B. Representacion bidimensional del acoplamiento molecular.
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Protein-Ligand molecular docking simulations of ivermectin
and importin aisoforms

Molecular docking analysis of ivermectin and importin a
isoforms, revealed favorable values of free binding energies
ranging from -7.71+0.24 to -8.63%0.32 kcal.mol’, showing
a higher affinity mainly to ARM2-ARM4 domains that are
topologically similar to those determined in the complexes
formed by SARS-CoV-2 N protein and ORF6 proteins (Figure
3, Figure 4, Figure 7, Supplementary Table S1, Supplementary
Table S2).

Active residues registered in a1 subfamily isoforms were
Trp142, Asn146, Trp184, Arg227, Trp231, Asn235 in importin
al,Arg217 and Trp221 inimportin a8, which interact with the
ivermectin molecule through hydrogen bonds and Pi-Sigma
interactions (Figure 7.A,B, Supplementary Table S2).

In complexes formed by a2 subfamily isoforms, active
residues identified were Trp137, Glu175, Trp179, Arg218 in
importin a3, and Trp137, Ser144, Asn183, Trp179 in impor-
tin 04, which interact with ivermectin by hydrogen bonds,
carbon hydrogen bonds, Pi and Sigma orbitals interactions,
as well as interactions between alkyl chains (Figure 7.C,D,
Supplementary Table S2).

On the other hand, complexes formed with a3 subfamily
isoforms revealed Trp191, Gly194, Asn195, Arg230, Trp234
as active residues in importin a5, Trp189, Asp271, Trp274 in
importin a6, and Gly155, Arg228, Trp232, Asn236, Trp274
in importin a7. These residues interact with ivermectin by
hydrogen bonds, interactions between polarized carbon
atoms and hydrogen, alkyl chains interactions, Pi and Sigma
orbitals interactions, Pi orbitals and alkyl chains interactions,
and interactions between Pi orbitals and donors groups of
hydrogen bond (Figure 7.E,F,G, Supplementary Table S2).

Human genome encodes seven importin aisoforms that
are grouped into three subfamilies known as a1, a2 and a3,
which share a common structure consisting in Importin (31
Binding domain (IBB) and ARM domains, that have the ability
to interact with NLS sequences at major and minor binding
sites, respectively (Pumroy and Cingolani, 2015).

Many of these isoforms have been extensively investi-
gated due to their abilities to interact with viral proteins, this
is the case of importin al, which is a target to several viral
proteins such as E1A of Adenovirus, N protein of Hantavirus,
integrase and Vpr of HIV-1 (Fontes et al., 2000; Pumroy and
Cingolani, 2015). In the same way, importin a3 is capable

Figure 7. Complexes of ivermectin and importin a isoforms. A. Importin a1. B. Importin a8. C. Importin a3. D. Importin a4. E. Importin a5. F.

Importin a6. G. Importin a7.

Figura 7. Complejos de ivermectina y las isoformas de importina a. A. Importina al. B. Importina a8. C. Importina a3. D. Importina a4. E.

Importina a5. F. Importina a6. G. Importina a7.
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to interact with viral proteins such as PB2 polymerase of in-
fluenza A virus, capsid proteins of Chikungunya virus, E1 and
E2 proteins of HPV virus (Bian and Wilson, 2010; Pumroy and
Cingolani, 2015; Pumroy et al., 2015).

Other isoforms such as importin a5 and importin a7
form complexes with influenza A protein PB2; recently it was
described that importin a6 and importin a7 interact with
VP24 protein of Ebola virus (Tarendeau et al., 2007; Xu et al.,
2014). On the other hand, a3 subfamily isoforms play an im-
portant role in STAT1/STAT2 heterodimers transport during
the antiviral host response (Fagerlund et al., 2002; Sekimoto
etal., 1997).

In the last decades it was reported that ivermectin is
able to block nucleoplasm-cytoplasm traffic of viral proteins
of DENaV, HIV-1, WNV, Hepatitis E Virus (HEV), Bovine Her-
pesvirus | (BoHV-1) and ZIKV avoiding their replicative cycle
(Crump, 2017; Mastrangelo et al., 2012; Omura and Crump,
2014; Wagstaff et al., 2012; Yang et al., 2020). King et al. (2020)
reported that ivermectin is also able to disrupt the interac-
tion of human adenovirus viral E1A protein with importin a
without disturbing importin a/f1 interactions.

An in vitro study performed by Caly et al. (2020), has evi-
denced that after 48-72 hours of treatment, ivermectin redu-
ced about 5000 fold the presence of replicated SARS-CoV-2
genome in infected Vero/hSLAM cells, finding IC, values
between 2.2-2.8 uM, indicating a high antiviral activity.

Researchers suggest that this decrease could be occu-
rring due to an inhibition of importin a/31 complex activity,
and was also hypothesized that ivermectin reacts between
each other creating compound complexes that may interfere
with viral processes (Caly et al., 2020; Rizzo, 2020).

Active residues identified in ivermectin-importin a com-
plexes were also described in complexes mentioned above,
so they could probably be sharing the same binding site
(major binding site) in the evaluated isoforms (Chook and
Blobel, 2001) (Figure 3, Figure 4, Figure 7, Supplementary
Table S1, Supplementary Table S2). These observations are in
agreement with Yang et al. (2020), who demonstrated in vitro
that ivermectin has the ability to interact with ARM domains
of importins a of Mus musculus, and may even cause instabi-
lity of importin a/$1 complexes.

Although interactions between ivermectin and importin
a are widely accepted, several computational studies have
shown that this molecule could have other SARS-CoV-2 pro-
teins as target. A recent in silico study performed by Azam et
al. (2020), described that ivermectin demonstrated binding
affinities to SARS-CoV-2 Nsp9 protein and to importin q, evi-
dencing favorable interaction energies, however, importin a
protein model used belongs to M. musculus.

In another study of biophysical and computational ap-
proach, was were reported binding affinities and interaction
stability of ivermectin (avermectin B1a, avermectin B1b) with
targets such as Importin a1 and Importin 31, as well as viral
proteins such as helicase and protease M"*°, among which
according to kinetic parameters evaluated show greater
affinities to viral proteins (Gonzalez-Paz et al., 2021).
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Another computational research revealed that ivermec-
tin exhibit higher binding affinities with the complex formed
by RNA polymerase (RdRp) and SARS-CoV-2 RNA molecules,
establishing ternary complex (Sen Gupta et al., 2022).

Another insilico study performed by Bello (2022), revea-
led that ivermectin could show as possible interaction target
SARS-CoV-2 protease 3CLpro and Nsp9 protein. This was also
registered by Choudhury et al. (2021), who reported favora-
ble binding to SARS-CoV-2 protease, SARS-CoV-2 replicase
and host cell TMPRSS2 (Transmembrane Serine Protease 2)
protein. In agreement to this, another computational study
performed by Saha and Raihan (2021) revealed that ivermec-
tin may also be a suitable inhibitor of interactions between
SARS-CoV-2 spike protein and human ACE2 (Angiotensin-
Converting Enzyme 2) protein.

The findings presented in this study add to the current
knowledge about the possible mechanisms of action of iver-
mectin against SARS-CoV-2 infection, which may result in the
competition for the major binding site (ARM2-ARM4 domain)
of the importin a isoforms by the viral proteins (N and ORF6)
and the ivermectin molecules, allowing the decrease of viral
replication success and the reduction of the inhibition of the
antiviral response of host cells.

CONCLUSIONS

This research reports for the first time the identification of
binding sites (ARM2-ARM4 domains) in human importin a
isoforms shared by the N and ORF6 proteins of SARS-CoV-2
and ivermectin, suggesting it as one of the possible mecha-
nisms of action of ivermectin against SARS-CoV-2 infection.
This study leads to new fields of research focused on the
exploration of new compounds with antiviral actions against
COVID-19, that targets to this classical nucleocytoplasmic
transport pathway involved in viral protein traffic and inhibi-
tion of antiviral response in infected cells.
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