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ABSTRACT
Sports professionals prioritize athlete body composition (BC) 
due to its relationship to performance. Bioelectrical impe-
dance analysis (BIA) estimates BC using predictive equations, 
and validating these equations is essential to determine their 
utility. The aim of this study was to externally validate four 
bioelectrical impedance equations for predicting body com-
position in Mexican recreational runners using dual-energy 
X-ray absorptiometry (DXA) as a reference method. This 
external validation pilot study followed a comparative, cross-
sectional design and included 30 Mexican male recreational 
runners (aged 38.0 ± 10.7 years). BC was measured using DXA 
and four BIA equations. A paired t-test was performed to eva-
luate differences between methods. Equivalent testing, sim-
ple linear regression, and Bland-Altman analysis were carried 
out to evaluate agreement between methods. Statistical 
significance was set at p < 0.05. Non-significant differences 
were found between DXA and predicted values with Macias 
et al. (2007) and Lukaski and Bolonchuk (1987) equations (p 
< 0.05). These equations provided equivalence at 5% regions 
and non-significant bias. In conclusion, Lukaski and Bolon-
chuk (1987) demonstrate the most accurate equations for the 
current sample. These equations showed promising results 
for measuring BC in a cohort of runners; however, caution is 
advised when applying them to individual tracking.
Keywords: Fat-free mass; athletes; body fat, sport.

RESUMEN
Los profesionales del deporte priorizan la composición cor-
poral (CC) de los atletas por su vínculo con el rendimiento. El 
análisis de impedancia bioeléctrica (BIA) estima la CC median-
te ecuaciones predictivas, cuya validación es necesaria para 
determinar su utilidad. El objetivo fue validar externamente 
cuatro ecuaciones de BIA para estimar la CC en corredores 
recreativos mexicanos, utilizando la absorciometría dual de 
rayos X (DXA) como método de referencia. En este estudio 
de validación externa con diseño transversal, 30 corredores 
recreativos mexicanos (edad 38.0 ± 10.7 años) fueron evalua-
dos mediante DXA y cuatro ecuaciones de BIA. Se aplicó una 
prueba t pareada para comparar diferencias entre métodos. 

Se emplearon pruebas de equivalencia, regresión lineal sim-
ple y análisis de Bland–Altman para evaluar la concordancia, 
con un nivel de significancia de p < 0.05. No se encontraron 
diferencias significativas entre DXA y las ecuaciones de Ma-
cías et al. (2007) y Lukaski y Bolonchuk (1987), ambas mostra-
ron sesgo no significativo y equivalencia dentro del 5%. Las 
ecuaciones de Lukaski y Bolonchuk (1987) demostraron ser 
las más precisas para esta muestra. Estas ecuaciones podrían 
ser útiles para estimar la CC en corredores recreativos; sin 
embargo, se recomienda cautela en su uso para seguimiento 
individual.
Palabras clave: Masa libre de grasa; atleta; grasa corporal; 
deporte.

INTRODUCTION
Professionals in sports science are interested in assessing 
body composition (BC) of athletes due to the close rela-
tionship with sports performance (Suchomel et al., 2016; 
Campa et al., 2019; Cholewa et al., 2019; Ferland et al., 2020). 
In addition, understanding BC serves as the foundation for 
designing nutritional and training programs to improve their 
physical skills. Lastly, BC can also be used to predict sports 
success and provide valuable health information.

Currently, there are several highly accurate assessment 
methods available, known as reference methods; however 
these are primarily intended for research purposes and are 
often inaccessible to sports professionals. Traditionally, 
anthropometry has been used to assess athletes. However, 
this method may be time-consuming, and the reliability of 
anthropometric measurements often depends on the expe-
rience of the anthropometrist (Gavan, 1950; Ulijaszek and 
Kerr, 1999). Another accessible and commonly used method 
is bioelectrical impedance analysis (BIA). BIA applies a low 
electrical current and uses the electrical properties of the 
body to measure resistance (R) and reactance (Xc). Resistance 
refers to the body’s resistance to the passage of an electric 
current, while reactance relates to the body’s dielectric capa-
city. These properties vary according to the body component 
distribution and proportion, mainly fat mass (FM) and total 
body water (TBW) (Kyle et al., 2004; Ward and Brantlov, 2023). 
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Due to the relationship between fat-free mass (FFM) and 
TBW, predictive equations have been developed using BIA 
variables and characteristics such as age, gender, weight, 
or height. Nevertheless, one of the main challenges of BIA 
equations is that most have been developed based on data 
from general populations, which do not consider athletes’ 
characteristics. Therefore, biased results can be obtained 
when applying these equations to athletes, as the FFM and 
fluid compartments often differ significantly from the ge-
neral population (Campa et al., 2021; Coratella et al., 2021). 
Therefore, it is essential to validate the currently available BIA 
equations with athlete populations, particularly those from 
the same country, to ensure their accuracy and applicability.

Recent reports highlighted that some equations deve-
loped for general populations could be applied to athletes 
(Campa et al., 2022). Sports professionals could use this infor-
mation to choose an equation that aligns with the variables 
measured regularly in their group of athletes. However, body 
profiles may vary considerably across sports and competitive 
levels, requiring further validation of available BIA equations. 
Therefore, this study aimed to externally validate four BIA 
equations in Mexican recreational runners using dual-energy 
X-ray absorptiometry (DXA) as a reference method.

MATERIAL AND METHODS
Participants and study design
This was an external validation pilot study following a compa-
rative, cross-sectional design, including a non-representative 
sample of 30 healthy mexican recreational runners (12 men 
and 18 women) aged between 18 and 50 years who were 
selected from a major research sample. Recruitment was 
performed through convenience sampling during 2018, with 
meetings held to explain the procedures to sports teams 
gathered in sports centers in northwest Mexico.

All participants had competition experience and a 
minimum of three years of exercise training and underwent 
rigorous physical activity screening using the short version of 
the International Physical Activity Questionnaire (IPAQ) befo-
re the study. Participants were nonsmokers, with no history 
of chronic cardiovascular disease or food allergies. Informed 

consent was obtained from all participants. This research 
was conducted following the principles of the Declaration 
of Helsinki and received approval from the Research Centre 
for Food and Development Ethical Committee (Approval No. 
CE/010/2018).

Anthropometric and body composition assessment
Measurements were conducted at the Laboratory of Im-
munology, located within the Research Centre for Food 
and Development in Hermosillo, Mexico. Participants were 
instructed to arrive with a 12-hours fasting and abstain from 
vigorous exercise and alcohol consumption for 24 hours pre-
ceding their visit. Additionally, they were requested to empty 
their bladder before undergoing assessments.

Participants wore minimal clothing during the measure-
ments. Body weight (BW) was measured using Seca flat scale 
model 874 (Seca, Hamburg, GER) and height (Ht) was measu-
red using Seca stadiometer model 984 (Seca, Hamburg, GER). 
These measures were recorded to the closest 0.05 kg and 1 
mm, respectively.

Hologic ASY-05119 was used for DXA scans (Hologic, 
Massachusetts, USA) to measure FFM as the main variable for 
equation validations. DXA equipment was calibrated accor-
ding to the instructions provided by the manufacturer every 
assessment day. Scans were performed by a trained techni-
cian. A pregnancy test was conducted on female participants 
before DXA scans.

BIA was performed with subjects lying supine with 
their limbs slightly away from their bodies. Skin adhesive 
electrodes were placed following a hand and foot protocol. 
BIA device Quantum II (RJL System, Santeramo in Colle, ITLY) 
with a single frequency of 50 kHz was used. Resistance (R) 
and reactance (Xc) values were recorded, and the impedance 
index was calculated (Ht2/R).

Additionally, FFM was predicted by applying the equa-
tions proposed by Macias et al. (2007) (EQ1), Matias et al. 
(2020) (EQ2), Lukaski and Bolonchuk (1986) (EQ3) and Matias 
et al. (2016) (EQ4), which are based on BIA and basic anthro-
pometric variables and enable the prediction of FFM or TBW 
(Table 1). FFM from EQ4 was calculated as follows as FFM = 
TBW/0.732.

Table 1. Body composition predictive equations based on BIA and anthropometry characteristics.
Tabla 1. Ecuaciones predictivas de composición corporal basados en BIA y antrpometria.

Authors Equation Sample Reference 
method

EQ1 FFM (kg) = (0.7374 × [Ht2 / R]) + (0.1763 × BW) - (0.1773 × 
Age) + (0.1198 × Xc) - 2.4658 155 Mexican healthy males and females, 20-50 years ADP

EQ2 FFM (kg) = -2.261 + (0.327 × [Ht2 / R]) + (0.525 × BW) + 
(5.462 × Sex)

142 Portuguese trained male and female athletes, 22.9 ± 4.9 
years

4C model by Wang 
et al. (2002)

EQ3 FM (kg) = (0.734 × [Ht2 / R]) + (0.116 × BW) + (0.096 × Xc) + 
(0.876 × Sex) - 4.03 312 American healthy males and females, 19-50 years HW

EQ4 TBW = 0.286 + (0.195 × [Ht2 / R]) + (0.385 × BW) + (5.086 × 
Sex) 212 Portuguese healthy active and elite athletes, 16-38 years D2O dilution

Sex was defined as 0 for females and 1 for males; Ht: Height; R: Resistance; BW: Body weight; Xc: reactance; ADP: Air displacement plethysmography; HW: 
Hydrostatic weighting; 4C: four compartments; D2O: deuterium oxide.

Sexo fue definido como as 0 para mujeres y 1 para hombres; Ht: Estatura; R: Resistencia; BW: Peso corporal; Xc: Reactancia; ADP: Pletismografía por 
desplazamiento de aire; HW: Pesaje hidroestático; 4C: Cuatro compartimentos; D2O: Óxido de deuterio.
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Statistical analysis
Results are presented as means and standard deviations 
(SD). The normality of the data distribution was confirmed 
by the Shapiro‒Wilk test. FFM was considered as the main 
variable, with DXA as the reference method. Differences 
between sexes were analysed using independent sample t-
tests. To establish an accurate prediction of FFM at the group 
level, paired sample t-test and equivalence testing with a 5% 
equivalence region (Dixon et al., 2018) around mean DXA 
FFM were conducted. The strength of association between 
equations and DXA was analyzed through Pearson’s correla-
tion coefficient (r); association was classified according to r 
values of 0.00 to 0.10 (Negligible), 010 to 0.39 (Weak), 0.40 to 
0.69 (Moderate), 0.70 to 0.89 (Strong) and 0.90 to 1.00 (very 
strong) (Schober and Schwarte, 2018). Simple linear regres-
sion analysis was performed to evaluate the variability of 
DXA FFM, explained through equations and R2 and standard 
estimation error (SEE). To evaluate the agreement between 
methods, Bland-Altman analysis was performed with a one 
sample t-test comparing the difference between methods 
against a null hypothesis equals to zero to identify systematic 
bias (Bland and Altman, 1986; 1999). Additionally, a simple 
linear regression analysis between method differences and 
method means was used to evaluate proportional bias; bias 
and 95% limits of agreement were reported (Doğan, 2018). 
Statistical significance was set at p < 0.05. Statistical analyses 
were carried out using IBM SPSS Statistics 26.0 (IBM corp, NY, 
USA). Graphics were generated using GraphPad Prism 8.0 
(GraphPad, Boston, USA).

RESULTS AND DISCUSSION
Independent sample t-tests revealed significantly greater 
values in BW, Ht, Ht2/R, and DXA FFM in the male group, while 
R and DXA percentage FM (%FM) were greater in the female 
group (p < 0.05). All participants characteristics are presented 
in Table 2.

Equations were subjected to validation based on sex 
and the whole sample (Table 3). The paired sample t-test 
showed significant differences in predicted FFM and DXA 
FFM (p < 0.05). DXA FFM consistently differed significantly 

from the EQ2 and EQ4 values in both sexes and the whole 
sample, which predictions resulted in higher FFM values. 
Non-significant differences were observed between EQ1 and 
EQ3 FFM compared with DXA FFM (p > 0.05).

Regarding the equivalence testing, EQ3 demonstrated 
equivalence with DXA in the male group and the whole 
sample meaning that differences between these methods 
may be within ±2.66 kg for males and ±2.25 kg for the whole 
sample. Meanwhile, EQ1 demonstrated equivalence with 
DXA only in the whole sample. No equivalence with DXA was 
observed in the other equations.

Table 3 presents the results of validating each equation 
against DXA. A statistically significant and moderate-to-
strong relationship was observed between DXA FFM and all 
the equations across all groups (r ranging from 0.70 to 0.95; 
p < 0.01), indicating a good to excellent linear association. 
In the male group, EQ2 and EQ4 showed the highest R2 with 
DXA FFM (R2 = 0.91 and 0.90, respectively); both regression 
models were statistically significant (p < 0.01). However, the 
bias observed by the Bland‒Altman plot for these equations 
was -4.33 kg for EQ2 and -5.11 kg for EQ4, both of which re-
sulted statistically different from zero, indicating a systematic 
bias (p < 0.01). A similar behavior was observed in the female 
group, where EQ2 and EQ4 showed the highest R2 with DXA 
FFM, resulting in statistically significant (p < 0.01). Systematic 
bias for these equations also resulted statistically significant 
(p < 0.05). On the other hand, although EQ1 and EQ3 exhibi-
ted lower R2 than EQ2 and EQ4, no significant systematic bias 
with DXA was observed in either males or females (p > 0.05).

Regarding the whole sample analysis (Fig. 1), EQ1 
showed a significant linear association with DXA (R2 = 0.77, p 
< 0.001) (Fig. 1a), with a non-significant intercept (p = 0.718), 
indicating consistent differences across the FFM range. This 
was supported by the Bland-Altman analysis, which resulted 
no systematic or proportional bias (p > 0.05) (Figure 1b). 

For EQ2, the linear regression was also significant (R2 = 
0.89, p < 0.001), but a significant intercept (p < 0.01) suggests 
a systematic bias between methods (Fig. 1c). Bland-Altman, 
confirmed this with a significant systematic bias of -3.52 kg (p 
< 0.05) (Fig. 1d), which resulted in an overestimation of FFM. 

Table 2. General participants characteristics grouped by sex.
Tabla 2. Características generales agrupadas por sexo.

Male
(n = 12)

Female
(n = 18)

Whole sample
(n = 30)

Age (years) 40.5 ± 11.8 36.3 ± 10.0 38.0 ± 10.7
BW (kg) 68.6 ± 11.5 60.8 ± 9.2* 63.9 ± 10.8
Ht (cm) 1.69 ± 0.1 1.62 ± 0.0** 1.7 ± 0.1

BMI (kg/cm2) 23.9 ± 3.9 22.9 ± 2.8 23.3 ± 3.3

R (Ω) 512.9 ± 53.2 602.8 ± 77.7** 566.9 ± 81.4

Xc (Ω) 64.8 ± 7.7 68.3 ± 11.1 66.9 ± 9.9
Ht2/R (Ω) 56.4 ± 6.5 44.6± 6.6*** 49.3 ±8 .7

DXA FFM (kg) 53.3 ± 5.9 41.2 ± 4.3*** 46.1 ± 7.8
DXA FM (%) 21.53 ± 5.9 30.2 ± 8.9** 26.7 ± 8.8

BW: Body weight; Ht: Height; R: Resistance; Xc: Reactance; FFM: Fat-free mass; FM: Fat mass; * p < 0.05; ** p < 0.01; *** p < 0.001.
BW: Peso corporal; Ht: Estatura; R: Resistencia; Xc: Reactancia; FFM: Masa libre de grasa; FM: Masa grasa; * p < 0.05; ** p < 0.01; *** p < 0.001.
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In addition, a significant proportional bias was observed for 
EQ2 (R2 = 0.28, p < 0.05), indicating that disagreement increa-
sed at higher FFM values. 

EQ3 presented a significant linear association with 
DXA (R2 = 0.83, p < 0.001) (Figure 1e) and a non-significant 
intercept (p = 0.887), meaning a constant difference between 
methods across the range. This was consistent with Bland-
Altman results, which showed no significant systematic or 
proportional bias. (Fig. 1f ). 

Lastly, EQ4 showed a significant association (R2 = 0.91, p 
< 0.001) (Fig. 1g), but with a significant intercept (p < 0.05), 
suggesting non-constant discrepancies. Bland-Altman analy-
sis confirmed a systematic bias of –3.84 kg (p < 0.05), and a 
significant proportional bias (R2 = 0.32, p < 0.001), indicating 
overestimation increased with higher FFM values (Fig 1h).

The main finding of the current study is the potential 
suitability of EQ1 and EQ3 in Mexican recreational runners 
when analyzed collectively. The equations selection emplo-
yed was based on their suitability for athletes, particularly 
EQ2 and EQ4 as these were developed involving athletes 
from different disciplines. Additionally, EQ3 has been pre-
viously validated in athletes (Lukaski et al., 1990) and EQ1 
was considered due to its development using data from the 
northwestern Mexican population.

Among the equations included, EQ3 provides the most 
accurate prediction of FFM compared with DXA on the male 
group and the whole sample group. Even though the paired 
sample t-test showed no differences in mean DXA FFM in the 
female group, equivalence testing was rejected. This means 
that differences in DXA FFM and EQ3 predictions may be 

larger than ± 2.03 kg for this group, considered clinically rele-
vant for longitudinal assessment. Additionally, the remaining 
validation metrics suggest caution in the use of EQ3 in this 
group. Interestingly, the whole sample improved EQ3 accu-
racy metrics, given that bias was slightly reduced.

To our knowledge, this is the first study externally vali-
dating EQ1 in Mexican recreational runners. Non-significant 
differences were observed in DXA FFM and EQ1 in both male 
and female groups. However, considering a more specific 
analysis, EQ1 rejected the equivalence testing for each sex 
group, although the whole sample improved this result. This 
suggests that using EQ1 in a sex-specific participant cohort 
may reduce the accuracy of FFM estimations, which could be 
clinically relevant, given that a 5% region of equivalence is 
set as a rigorous criterion for evaluating agreement between 
methods (Dixon et al., 2018). Moreover, even though sex 
was not included as a predictive variable in EQ1, R2 differed 
considerably between sexes. On the other hand, EQ1 showed 
improved R2 and lower bias values in the whole sample com-
pared to the subgroups. This improvement may be partially 
explained by the larger variability in FFM values when both 
sexes are combined, which increases the variance explained 
by the model. This highlighted the capability of EQ1 to pre-
dict FFM in a cohort of athletes, including both sexes. On an 
individual basis, even if reasonable R2 and non-significant bias 
were observed, the use of EQ1 may not be appropriate due 
to the wider LOA obtained through Bland-Altman analysis.

For a better understanding of the current findings, a 
FFM prediction from EQ3 from individual data is presented 
as this equation resulted to be the most accurate compared 

Table 3. External validation of FFM predictions through BIA equations with DXA as a reference method.
Tabla 3. Validación externa de las predicciones de FFM por ecuaciones de BIA con DXA como método de referencia.

FFM Bias (95% IC) ET r R2 SEE 95% LOA
Male (n=12)

DXA 53.3±5.8 - - - - -
EQ1 51.8±6.8 1.52 (-0.65, 3.69) No 0.86** 0.75** 3.07 -5.19, 8.23
EQ2 57.6±7.6† -4.33 (-6.02, -2.63)* No 0.95** 0.91** 1.85 -9.56, 0.91
EQ3 52.4±5.3 0.90 (-0.58, 2.37) Yes 0.92** 0.84** 2.45 -3.68, 5.47
EQ4 58.4±7.3† -5.11 (-6.71, -3.50)* No 0.95** 0.90** 1.92 -10.05, -0.17

Female (n=18)
DXA 41.2±4.3 - - - - -
EQ1 42.8±4.7 -1.65 (-3.34, 0.04) No 0.72** 0.52** 3.06 -8.32, 5.02
EQ2 44.2±6.2† -2.99 (-4.76, -1.21)* No 0.83** 0.69** 2.45 -9.98, 4.01
EQ3 42.3±4.7 -1.08 (-2.81, 0.66) No 0.70** 0.49** 3.15 -7.92, 5.77
EQ4 44.2±5.9† -2.99 (-4.66, -1.32)* No 0.83** 0.69** 2.45 -9.58, 3.60

Whole sample (n=30)
DXA 46.1±7.8 - - - - -
EQ1 46.5±7.1 -0.38 (-1.76, 1.01) Yes 0.88** 0.77** 3.57 -7.56, 6.88
EQ2 49.6±9.5† -3.52 (-4.74, -2.30)* No 0.94** 0.89** 2.53 -9.91, 2.86
EQ3 46.4±7.0 -0.29 (-1.47, 0.90) Yes 0.91** 0.83** 3.24 -6.54, 5.96
EQ4 49.9±9.6† -3.84 (-5.02, -2.65)* No 0.95** 0.91** 2.38 -10.06, 2.41

ET: Equivalence testing at 5% from DXA FFM corresponding to ± 2.25 kg for the whole sample, ± 2.66 kg for males, and ± 2.06 for females; r: Pearon’s correlation 
coefficient; R2: Simple linear regression determination coefficient between the EQ and DXA; SEE: Standard estimation error; LOA: Limits of agreement. *p < 0.05; 
** p < 0.001†Significant difference to DXA FFM.
ET: Prueba de equivalencia al 5% de la FFM de DXA correspondiente a ± 2.25 kg para la muestra total, ± 2.66 kg para hombres y ± 2.06 para mujeres; r: 
Coeficiente de correlación de Pearon; R2: Coeficiente de determinación de regression lineal simple entre ecuaciones y DXA; SEE: Error estándar de la estimación; 
LOA: Límites de concordancia. *p < 0.05; ** p < 0.001; †diferencias estadísticas con DXA FFM.



Volume XXVII

Vázquez-Bautista et al: External validation of bioelectrical impedance analysis / Biotecnia 27:e2512, 2025

5

Figure 1. Accuracy analysis between DXA and FFM predictions from four BIA-based equations. Panels (a), (c), (e), and (g) display 
the linear regressions analysis, showing significant associations for all equations, with non-significant intercepts for EQ1 and EQ3, 
and significant intercepts for EQ2 and EQ4. Panels (b), (d), (f ), and (h) show Bland-Altman plots, where EQ1 and EQ3 exhibited no 
significant systematic or proportional bias, while EQ2 and EQ4 showed both, indicating that these equations tend to overestimate 
FFM, particularly in individuals with higher values. White dots represent females; black dots represent males.
Figura 1. Análisis de precisión entre DXA y las predicciones de masa libre de grasa (FFM) a partir de cuatro ecuaciones basadas en BIA. 
Los paneles (a), (c), (e) y (g) muestran los análisis de regresión lineal, evidenciando asociaciones significativas para todas las ecuaciones, 
con interceptos no significativos para EQ1 y EQ3, y significativos para EQ2 y EQ4. Los paneles (b), (d), (f ) y (h) presentan los gráficos 
de Bland-Altman, donde EQ1 y EQ3 no mostraron sesgo sistemático ni proporcional significativo, mientras que EQ2 y EQ4 mostraron 
ambos, lo que indica que estas ecuaciones tienden a sobreestimar la FFM, particularmente en individuos con valores más altos. Los 
puntos blancos representan a las mujeres; los puntos negros representan a los hombres.
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with DXA. A random male participant aged 25 years old with 
a BW of 63.4 kg and a DXA FFM of 55.0 kg corresponding to 
13.20% FM, resulted in the EQ3 FFM predictions of 55.40 kg 
(Δ -0.37 kg). In this case, FFM differences fall into the equi-
valence region, and these are considered clinically irrelevant. 
However, these differences may not be that small in all 
participants as differences of up to 5.55 kg were observed, in 
other participants considered clinically relevant as the %FM 
increased from 25.10% to 33.48%, thereby resulting in his 
category shifting from overfat to obese category (Gallagher 
et al., 2000).

In contrast, EQ2 and EQ4 values exhibited significant 
differences when compared with DXA FFM, thereby rejecting 
equivalence testing, meaning that group differences may be 
larger than ±2.25 kg of FFM. Both equations also exhibited 
significant systematic bias, with an average overestimation 
of 3.52 kg (EQ2) and 3.84 kg (EQ4) across the whole sample. 
This bias was particularly evident in participants with FFM 
above 50 kg. Additionally, a significant proportional bias was 
observed in the Bland–Altman analysis for both equations, 
indicating that the magnitude of overestimation increased 
with higher FFM values. The regression analyses also revea-
led statistically significant intercepts, suggesting systematic 
disagreement across the measurement range. These findings 
suggest that neither EQ2 nor EQ4 are appropriate for accura-
tely estimating FFM in samples similar to ours. Since gender is 
a variable included in EQ2 and EQ4, differences in BC in males 
and females may contribute to prediction error, as numerous 
equations have included this variable.

It could be expected to find certain differences in DXA 
measurements and predictions as these have been develo-
ped using other reference methods. Systematic bias could be 
found in BC across different methodologies and populations 
(Lohman and Chen, 2005). Furthermore, compared with other 
reference methods, DXA has been reported to overestimate 
FM (Santos et al., 2010). Despite these factors, we believe that 
the main reason for the differences in equation predictions 
and DXA is the overall characteristics of the samples stu-
died. Accuracy of predictive equations is influenced by the 
characteristics of the subjects evaluated, and it is considered 
important that these characteristics closely match those 
involved in the equation development. Our sample showed 
similarities to the sample included in the development of 
EQ1, particularly in age, Ht, R, and FFM. However, females in 
the EQ1 study were smaller than our sample was. Although 
Ht were not directly employed in the equations, these were 
indirectly used in the form of Ht2/R. Disparities between the 
DXA and EQ1 values may be attributed to differences in BW 
and %FM as our sample was leaner than the sample from EQ1 
study, mainly in the female group.

There is limited information available regarding EQ3 
development sample. The subjects ranged in age from 19 to 
50 years, and the mean FFM was 60.2 kg, which was notably 
higher than our sample (Lukaski et al., 1986). Nevertheless, 
due to the fair agreement observed between the DXA and 
EQ3 values in the present study, we assumed that some of 
the characteristics in their sample were comparable to ours. 

In a previous study (Lukaski et al., 1990), EQ3 was tested on 
athletes from various sports and reported an R2 = 0.988 using 
hydrostatic-weighting as the reference method. Considering 
these results and the findings of the current study, it is likely 
that EQ3 may be more suitable for subjects with higher 
FFM, as both the original sample and the athlete validation 
sample included individuals who were heavier in terms of 
FFM than our participants. In other studies, a weak relation-
ship between DXA and EQ3 predictions has been reported, 
particularly among female athletes. Houtkooper et al. (2001) 
reported an R2 = 0.10 for a %FM when comparing DXA using 
EQ3 in a group of nineteen heptathletes. The equation over-
estimated the FM in the Houtkooper et al. (2001) sample by 
4.4%. It is worth mentioning that the authors did not provide 
a detailed discussion of these findings. Noteworthy, their 
sample was considerably leaner than the sample included in 
the EQ3 development.

Notwithstanding the development of EQ1 and EQ3 from 
the general population, their wide applicability across va-
rious populations, including recreational athletes, is evident 
due to the broad range of values in the variables included in 
equation development. This is confirmed by the accurate pre-
diction of FFM of EQ3 in athletes by Lukaski et al. (1990). We 
find EQ1 and EQ3 to be viable options for predicting FFM in a 
group of recreational runners, despite the wide 95% LOA that 
may be considered for individual predictions. Moreover, it is 
important to highlight the consistency between validation 
metrics as the capacity of the equation to accurately predict 
BC. Compared with DXA, EQ3 demonstrated to be the most 
consistent equation with a fair accuracy, given that most of 
the metrics were adequate in males and the whole sample 
analysis. However, it is important to note that the Bland–Alt-
man analysis revealed considerably wide LOAs, ranging from 
–7.92 kg to 5.96 kg depending on the subgroup. Therefore, 
caution should be exercised when using these equations at 
the individual level, as various authors emphasize that agree-
ment between methods is primarily determined by LOA (At-
kinson and Nevill, 1998; Giavarina, 2015). Given these results, 
individual agreement between DXA FFM and the predicted 
values cannot be confirmed, and such discrepancies may be 
substantial in practice—particularly when BC estimates are 
used for personalized training or nutritional decision-making.

In the case of EQ2, the sample used in its development 
was different from ours. These subjects were considerably 
younger, larger, and leaner. Similarly, the development of 
EQ4 had a similar sample. Differences in sample characteris-
tics could explain the lack of agreement between DXA and 
predictions of both equations, in addition to differences in 
methods employed for the use of a 4C model in EQ2. Moreo-
ver, the use of the hydration factor to estimate FFM from EQ4 
could increase bias in different age ranges, as the hydration 
factor may vary slightly on the individual basis (Bossingham 
et al., 2005; Sagayama et al., 2020).

Athletes may develop body profiles according to their 
physical demands. Even though, recreational athletes may 
differ from a higher level athletes, participants in the current 
study presented similarities with findings from previous 
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reports on Ht, BW and BMI. However, in other reports, recrea-
tional runners were relatively leaner, even when considering 
the same age range. This was reported by Nikolaidis et al. 
(2020), with a mean %FM of 19.6 ± 4.7% for women and 17.7 
± 4.0% for male participants. Another study documented 
a FM of 16.3 ± 5.6% in male recreational runners with BMI 
values similar to our sample (Knechtle and Tanda, 2013). It 
is important to note, that the assessment method used by 
these authors was anthropometry which may add differen-
ces in the results. It is worth highlighting that elite athletes, 
particularly in endurance sports, are generally expected to 
be leaner than recreational athletes. Specifically in runners, 
the %FM has been observed to fall within the range of 14.9% 
to 21.0% in females (Piasecki et al., 2018; Carbuhn et al., 2022) 
and 7.29% to 11.4% in males (Mooses et al., 2013; Carbuhn et 
al., 2022). Notably, a particularly low FM of 10.31% was repor-
ted by Mooses et al. (2013) in the case of recreational athletes 
although these authors did not provide explicit criteria for 
athlete classification. Nonetheless, while we acknowledge 
that there may be differences in FM in the current study and 
prior reports, a portion of these variations may be attributed 
to the different methods employed and the populations 
studied.

Limitations of the study and further recommendations 
The main limitation of the current study is the relatively 
small sample size, which may limit the generalizability of the 
findings and the precision of some estimates, particularly 
in subgroup analyses. Further studies are encouraged with 
a larger sample size to strengthen the results by including 
more subjects with a wider variety of body characteristics. 
Our sample differed from recreational athlete characteristics 
according to other studies. However, categorizing athletes 
could be difficult due to the lack of standardizing criteria. 
Nevertheless, these results show the importance of identi-
fying pertinent predictive equations to track and evaluate 
accurately BC, and the potential of equations to be used in 
recreational athletes who may not suit the standard athletic 
body.

CONCLUSIONS
Equations one and three demonstrated a greater level of 
accuracy in predicting BC within the current sample, and 
Equation three was more consistent between groups of 
data. These equations exhibit the effectiveness to predict 
FFM with a notable degree of accuracy when applied to a 
group of athletes with similar characteristics as the current 
sample. However, agreement on an individual basis was 
not accomplished. Researchers are encouraged to evaluate 
the accuracy of the different equations available to provide 
information for their universal utility.
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