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ABSTRACT
Cutaneous leishmaniasis caused by Leishmania mexicana is a 
major public health problem in America. Consequently, there 
is a need for new and more effective strategies to control the 
disease. Despite considerable efforts to prevent and treat 
cutaneous leishmaniasis, there is no licensed human vaccine, 
which encourages research on this topic. Advances in rever-
se vaccinology and immunoinformatics have facilitated the 
design of promising vaccine candidates against cutaneous 
leishmaniasis. The versatility of reverse vaccinology approach 
allows the inclusion of several epitopes into a single vaccine 
construction, potentially eliciting strong, protective immune 
responses when tested in vivo. Therefore, in silico approaches 
are expected to further overcome current issues regarding 
immunogenicity, safety, and production costs of L. mexicana 
vaccines, as well as questions related to parasite biology. This 
work covers the state of the art of conventional and new-ge-
neration vaccines for L. mexicana, as well as perspectives and 
challenges of immunoinformatics in cutaneous leishmaniasis 
vaccine research.
Keywords: New World Cutaneous Leishmaniasis, immunoin-
formatics, vaccine design.

RESUMEN
La leishmaniasis cutánea causada por Leishmania mexicana 
es un importante problema de salud pública en América. En 
consecuencia, se necesitan enfoques nuevos y más eficaces 
para controlar la enfermedad. A pesar de los considerables 
esfuerzos para prevenir y tratar la leishmaniasis cutánea, no 
se dispone de vacunas licenciadas para humanos, lo que 
incentiva la investigación en este tema. Los avances en la 
vacunología reversa y la inmunoinformática han facilitado el 
diseño de varios candidatos contra la leishmaniasis cutánea. 
La versatilidad del enfoque de vacunología reversa permite 
la inclusión de varios epítopos en una sola construcción de 
vacuna, pudiendo inducir respuestas inmunes protectoras in 
vivo. Por lo tanto, se espera que el enfoque in silico resuelva 
los problemas actuales relacionados con la inmunogenici-
dad, seguridad y costos de producción de las vacunas contra 
L. mexicana, así como cuestiones relacionadas con la biología 
del parásito. Este trabajo abarca el estado del arte de las 

vacunas para L. mexicana, así como las perspectivas y desa-
fíos de la inmunoinformática en la investigación de vacunas 
contra la leishmaniasis cutánea.
Palabras clave: Leishmaniasis cutánea del nuevo mundo, 
inmunoinformática, diseño de vacunas.

INTRODUCTION
Cutaneous leishmaniasis (CL) is the most common presen-
tation of leishmaniasis, a disease caused by parasites of the 
Leishmania genus. American CL, also known as tegumentary 
leishmaniasis, is charachterized by skin ulcers throughout the 
body, resulting from the dissemination of parasites through 
the bloodstream and lymphatic system. The manifestation 
of symptoms depends on the individual’s immune response 
and the specific species of Leishmania involved (Pinart et al., 
2020).

In America, CL is known as New World CL (NWCL) or tegu-
mentary leishmaniasis, and it is mainly caused by L. mexicana 
and L. brasiliensis species complex (Abadías-Granado et al., 
2021). In 2024, more than 34,000 new cases were registered 
in the region, with an increased incidence in Mexico, Argenti-
na, Costa Rica, and Ecuador largely due to vector spread and 
population migration (PAHO, 2024).

Control and prevention are based on vector/reservoir 
control and pharmacological treatment, for which L. mexi-
cana has shown intermediate to low sensitivity (Pinart et al., 
2020). Treatment success is variable mainly due to parasites’ 
resistance, high costs, low availability in endemic areas and 
toxicity. Antimycotics like ketoconazole show some efficacy 
against L. mexicana but in vitro sensitivity studies have repor-
ted contradictory data (de Vries and Schallig, 2022).

Sometimes, the infection is self-resolved, which indica-
tes an effective but incomplete immune response develo-
pment, supporting that a vaccine could be used to treat or 
prevent leishmaniasis. Although several strategies have been 
used to achieve a vaccine for humans, there is no licensed 
candidate to date, thus hampering the efficient control of 
leishmaniasis. In the last decade, bioinformatics tools and 
genetic engineering have boosted leishmaniasis vaccines 
research (Dinc, 2022).
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This review provides a comprehensive overview of 
current vaccine development against NWCL caused by L. 
mexicana, and examines remaining problems to achieving 
effective vaccines for humans. It also discusses the status of 
immunoinformatics applied to CL vaccine research, the cha-
llenges that remain to be addressed, and the perspectives of 
this approach applied to CL prevention and treatment.

NEW GENERATION VACCINES FOR NWCL 
Live vaccination against CL, known as leishmanization (LZ), 
has been practiced for centuries in Middle East countries, 
but is not recommended due to safety issues. In addition, 
no evidence proves that LZ is protective against New World 
Leishmania species in humans (Moreira et al., 2023). However, 
LZ has shown that vaccination in endemic areas is the most 
cost-effective tool for leishmaniasis control and prevention. 
An ideal NWCL vaccine should fulfill some requirements: (i) 
good safety profile, (ii) minimum number of immunizations, 
(iii) cost-effectiveness, (iv) show prophylactic or therapeutic 
efficacy, (v) optimal delivery, and (vi) no need for cold chain 
supply (Rafati et al., 2017).

L. mexicana pathogenicity and the immune responses 
that mediate protection are complex. Nevertheless, a suc-
cessful response to L. mexicana infection includes reactive 
oxygen species (ROS) and nitric oxide production by ma-
crophages, which is triggered by T helper 1 lymphocytes, 
Natural Killer cells, and T cytotoxic lymphocytes. These 
immune responses decay faster than antibody responses 
(Abadías-Granado et al., 2021). Thus, immunological memory 
induction poses a problem for the effectiveness and efficacy 
of vaccines.

Several first (live or killed parasites), second (native or 
recombinant proteins) and third-generation (nucleic acids) 
vaccine candidates have been tested to prevent L. mexicana 
infection. Although there is still no vaccine for human use, 
advances reported in clinical trials provide hope for its deve-
lopment in the future (Moafi et al., 2019; Dinc, 2022) (Table I).

Genome sequencing of L. mexicana species complex has 
enabled its genetic attenuation by targeted gene disruption 
(Saravia et al., 2006) and CRISPR/Cas9, with variable protec-
tion induction in murine and non-murine models (Volpedo 
et al., 2022). In contrast, Ishemgulova et al. (2018) demonstra-
ted that L. mexicana knockout strains for a putative virulence 
factor predicted in silico, do not alter colonization in neither 
vector nor mice, which highlights the importance of bioinfor-
matics-predicted virulence factors experimental validation.

Attenuated vaccines present drawbacks regarding stan-
dardization for large-scale production, virulence reversion or 
incomplete attenuation, and differences in protection bet-
ween preclinical and clinical trials. Nevertheless, attenuation 
by genetic modification could contribute to maintain im-
munogenicity and vaccine potency, but assure no virulence 
reversion (Zabala-Peñafiel et al., 2020).

On the other hand, L. mexicana and L. amazonensis au-
toclaved promastigotes have been used as killed vaccines in 
South America, where cross-protection has been reported in 
some countries (Convit et al., 2004). Nevertheless, autoclaved 
parasites lose potency over time, therefore efforts are focu-
sed on combining its application with immunotherapy and 
chemotherapy (Zabala-Peñafiel et al., 2020).

Regarding second-generation candidates, subunit and 
recombinant vaccines for dogs have been authorized and are 
currently available in Europe and Brazil, namely Canileish®, 
Leish-Tec®, Leishmune® and Letifend® (Calzetta et al., 2020), 
supporting that a vaccine for humans is feasible. Although 
pathogen subunits do not confer long-lasting immunity, 
they are safer, more tolerated, and better characterized than 
whole-cell vaccines (Tahamtan et al., 2017).

Several attempts of second-generation candidates have 
been explored: fractionated parasite and vector proteins, 
polyprotein combinations, and delivery systems (Coler and 
Reed, 2005). However, Leishmania recombinant proteins are 
expensive to produce at large-scale, which is not viable for 
mass vaccination. Therefore, it is preferable to design synthe-
tic polyepitopic vaccines using combinations of conserved 

Table I. Vaccine candidates against L. mexicana tested in animal models.
Tabla I. Candidatos vacunales contra L. mexicana evaluados en modelos animales.

Candidate Antigens Main results Reference
DNA vaccine
(3rd generation)

L. mexicana GP63 gene into 
ΔaroD S. typhi strain CVD 908

Protection against active CL in mice. Partial protec-
tion in monkeys. No need for adjuvant (González et al., 1998)

Native proteins 
(2nd generation) Adjuvated GP63, CP, and MBA Protection against promastigotes in C57B/L mice. Risk 

of transient and accentuated disease (Aebischer et al., 2000)

L. mexicana H-line
(1st generation)

Gentamicin-attenuated L. 
mexicana

Significant control of WT parasites through Th1 res-
ponse in BALB/c mice (Daneshvar et al., 2003)

Killed parasites 
(1st generation) Autoclaved L. mexicana + BCG Effective as immunotherapy in human severe muco-

cutaneous and diffuse CL resistant to treatment (Convit et al., 2004)

Genetically modified L. mexicana
(1st generation)

ΔGDP-MP 
(live attenuated)

Long-lasting protection in BALB/c mice. Risk of viru-
lence reversion (Zabala-Peñafiel et al., 2020)

In silico predicted antigen 
(3rd generation)

L. mexicana MBA gene into plas-
mid pVAX1

Parasite reduction and improvement of clinical mani-
festations of CL in mice. No need for adjuvant (Burgos-Reyes et al., 2021)

Genetically modified L. mexicana
(1st generation) LmexCen-/- Induce immune response similar to natural infection. 

Risk of virulence reversion (Volpedo et al., 2022)

GDP-MP: GDP-mannose pyrophosphorylase; lmlpg2: L. mexicana Golgi GDP-mannose transporter coding gene; CPB: Cysteine proteinase B; MBA: Membrane 
bound acid phosphatase; WT: wild-type.
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epitopes. Moreover, synthetic peptides have great versatility 
to adapt to innovative delivery systems and have been inves-
tigated for vaccination against NWCL (Gupta et al., 2021).

Polyepitopic molecules have increased immunogeni-
city, lower risk of adverse reactions, and wider population/
parasite species coverage compared to crude antigens. For 
instance, L. mexicana Nucleoside hydrolase 36 (NH36), a vital 
enzyme for parasite metabolism, has proven cross-protection 
against L. braziliensis in humans (Alves-Silva et al., 2019). Also, 
preclinical evidence indicates properly adjuvanted peptides 
and genetic vaccines induce strong protective cellular immu-
nity (Graña et al., 2022).

In this regard, third-generation vaccines are advanta-
geous due to their possibility to combine several epitopes 
into a single formulation that could provide cross-protection 
against different Leishmania species. NH36 and GP63 are the 
most tested proteins as genetic vaccines for NWCL in mice: 
VR1012-NH36 DNA candidate conferring cross-protection 
against L. chagasi and L. mexicana (Dumonteil et al., 2003), 
and naked gp63 DNA adjuvanted with aluminum induces 
cellular immune responses (Rosado-Vallado et al., 2005).

Several L. mexicana genes encoded in plasmid VR1012 
have also been tested as DNA vaccines in mice challenges, in-
ducing partial protection in all cases (Dumonteil et al., 2003). 
pVAX1 is another plasmid that has been used as a vector for 
an in silico predicted membrane-bound acid phosphatase 
gene from L. mexicana (LmMBA), demonstrating a protective 
effect in mice (Burgos-Reyes et al., 2021).

However, the failure of several genetic vaccine candi-
dates demonstrates that protection against leishmaniasis is 
more complex than originally thought. Low immunogenicity 
of naked DNA vaccines’ due to degradation, hydrophilic na-
ture, and poor recognition, is a major challenge (Akbari et al., 
2021). Other concerns with nucleic acid vaccines are possible 
recombination with the host genome, enhanced disease 
and low gene transfection efficacy, which poses substantial 
problems for safety and manufacturing (Tejeda-Mansir et al., 
2019).

Thus, researchers have explored alternative approaches 
including immunotherapy (Akbari et al., 2021), nanotechno-
logy (Tejeda-Mansir et al., 2019), virus and bacteria (Cecílio et 
al., 2020). Remarkably, synthetic peptides, nucleic acids and 
proteins have great versatility to adapt to innovative delivery 
systems.

CUTANEOUS LEISHMANIASIS VACCINE 
DEVELOPMENT THROUGH REVERSE 
VACCINOLOGY 
Reverse vaccinology (RV) involves the prediction of novel 
epitopes through bioinformatics, proteomics, comparative 
and functional genomics (Rappuoli, 2000). This methodolo-
gy allows for thoughtful mapping and selection of immune 
targets with antigenic diversity, and has become extremely 
useful in vaccine research and development. Vaccine deve-
lopment against several pathogens and cancer has been 
swiftened using RV, thus holding great potential for global 
public health improvement (Cianci and Franza, 2022).

RV methodology and advances
Vaccine design through RV starts with retrieving genomic 
data (DNA or translation products) from public online data-
bases that gather information and models for new vaccine 
targets and drug development. Despite gaps in L. mexicana 
metabolism and pathogenicity knowledge, there are some 
databases exclusively related to the parasite, such as LeishIn-
DB, TriTrypDB, LeishPathNet, LeishDB, LeishCyc and LmSmdB. 
Using these resources, various RV strategies have been ex-
plored to design synthetic and chimeric peptides, as well as 
DNA vaccines (Flórez et al., 2021; Gupta et al., 2021). Figure 1 
shows a general RV workflow.

L. mexicana genome comprises 8149 sequences on ave-
rage, but gene expression varies depending on the parasite’s 
life stage (Rogers et al., 2011). Using DNA as a starting point 
for vaccine design offers the advantage of accessing all 
the potential proteins within the pathogen’s genome, but 
thousands of them are irrelevant as vaccine targets since 
they are not involved in cellular immune response (Calzetta 
et al., 2020). Considering this, an extensive analysis must be 
carried out to identify which disease-related genes are being 
expressed.

On the other hand, analyzing 3D structures of patho-
genic proteins (translation products) offers valuable insights 
into the motifs responsible for immune recognition, thus hel-
ping in epitope prediction. Additionally, translation products 
can be obtained from diverse transcriptomic experiments, 
such as whole exome sequencing, RNAseq, or microarrays 
(Hwang et al., 2021). Using this approach, it is possible to 
assess the pathogen´s gene expression during multiple steps 
of its life cycle, and immune factors from the host, which 
leads to a more efficient antigen selection.

Numerous criteria for RV have been developed to aid in 
vaccine candidate prediction. The most widely used are the 
prediction of antigenicity, allergenicity and immunogenicity, 
subcellular localization, function, conservation, and physi-
cochemical features such as hydrophobicity. However, for 
intracellular pathogens, subcellular localization could not be 
decisive, as antigens for T-cell immunity are not necessarily 
surface-exposed (Martinelli, 2022).

LmMBA, evaluated as a prophylactic vaccine by Burgos-
Reyes et al. (2021) is a good example of a protein identified 
through a data mining approach. Various authors have 
developed immunoinformatics pipelines applicable to Leish-
mania vaccine design, with variable degrees of success when 
tested in vivo or in vitro (Singh et al., 2020; Rawal et al., 2021). 
This depends mostly on the parasite species, as well as target 
population, platforms/tools accuracy and procedure order, 
and the selected vaccine scaffold.

Once genomic data is retrieved, mining vaccine anti-
gens is performed either by a subtractive genomic method 
or by a network-based approach. In the first case, the parasite 
transcriptome or proteome is classified according to each 
protein’s specific biological relevance while eliminating ho-
mologs that could lead to immune tolerance, autoimmune 
responses, or tissue damage in the host (Vivona et al., 2008).

https://www.sciencedirect.com/topics/medicine-and-dentistry/proteomics
https://www.sciencedirect.com/topics/medicine-and-dentistry/functional-genomics
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/subcellular-localization
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/immunological-tolerance
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Figure 1. Reverse vaccinology general workflow. In silico approach starts with antigen mining from genes/proteins and selection of vaccine candidate 
sequences. Next filtering levels involve immune epitopes prediction, selection and linking to merge a vaccine construction. Subsequently, secondary and 3D 
structure analysis is performed. Docking studies, and immunogenicity studies can also be conducted. Codon sequence optimization is also necessary prior to 
in vitro cloning. Vaccine candidate is further purified and validated before moving into clinical trials (Created under BioRender.com license).
Figura 1. Flujo de trabajo general en vacunología reversa. El enfoque in silico comienza con la identifiación de antígenos a partir de genes/proteínas y con 
la selección de secuencias candidatas a vacunas. Los siguientes niveles de filtrado implican la predicción, selección y combinación de epítopos inmunogénicos 
en una construcción de vacuna. Posteriormente, se realiza un análisis de estructuras secundarias y se generan modelos tridimensionales de las proteínas. 
Además, se pueden realizar estudios de acoplamiento y estudios de inmunogenicidad. La optimización de la secuencia de codones es necesaria antes de 
la clonación in vitro. Por último, la vacuna candidata se purifica y se valida experimentalmente antes de pasar a los ensayos clínicos (Creado bajo licencia de 
BioRender.com).

In the network-based strategy, central proteins are 
identified in silico, a process that often involves mutational 
studies, molecular dynamics biology, and orthology-based 
methods to determine protein-protein interaction networks 
(Wheeler, 2021). The aforementioned methodologies can be 
combined, leading to an even deeper screening of potential 
targets. The selection process yields a short list of possible 
antigens to be tested in immunological simulations.

Conservation analysis among multiple pathogen strains 
and related species is also important. Such comparisons 
enhance our understanding of Leishmania diversity and 
permits identifying conserved epitope sequences specific to 
the pathogen, while minimizing or excluding variants found 
in other pathogen species that potentially elicit detrimental 
immune responses (Shams et al., 2022).

Cytokines like interferon gamma (IFN-γ) and major 
histocompatibility complex (MHC) I and II are important in 
protection against NWCL. One way to predict IFN-γ -inducing 
motifs is through IFNepitope, while MHC-II epitopes can be 
predicted in the Immune Epitope Database (IEDB), Vaxitop, 
and NetMHCIIPan-4.0, which is currently the most accurate 
software (Dhanda et al., 2013). Regarding MHC-I epitopes, 
artificial neural networks of NetMHC4.0 and NetMHCPan4.1 
are reliable methods to screen for MHC-I binding peptides 
(Gonzalez-Galarza et al., 2020).

Genetic background can be detrimental for vaccine 
effectiveness. Since CL affects people in extensive areas, and 
MHC alleles are highly variable in humans, potential target 
population ethnicity must be taken into account. Population 
coverage, a tool from IEDB, in combination with allele fre-
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quency databases can be used to focus epitope prediction 
on a specific population based on geographical distribution. 
Herrera et al. (2020) created an interactive database with geo-
referenced information on Leishmania species distribution in 
America, which could help in target population selection and 
antigen/species conservation analysis.

B-cell epitopes may also be included in the vaccine to 
block the pathogen invasion. The corresponding analysis 
follows the same criteria of T-cell epitopes and can be perfor-
med alongside or after MHC selection. Tools like BepiPred3.0, 
ElliPro, DiscoTope and artificial intelligence platforms are 
available. Combining these softwares with a 3D visualization 
tool makes it possible to select linear and conformational B-
cell epitopes (Woolums and Swiderski, 2021).

Regrettably, for L. mexicana no predicted immunogens 
have been successful in generating broadly neutralizing 
antibody responses. A highly specific and sensible B-cell 
epitope prediction for L. mexicana tool still does not exist 
because of epitope structural complexity. Another issue with 
epitope prediction from recombinant proteins is the loss of 
conformational epitopes as a result of non-native folding of 
the fragments (Martinelli, 2022). Therefore, not all predicted 
peptides are immunogenic in animal models.

Secondary structure analysis and 3D modeling of vac-
cine construction are critical. There are several tools for de-
ducing chimeric protein structure: AlphaFold, RoseTTAFold 
and Modeller servers have become the most used for de novo 
predictions. However, depending on the amino acid sequen-
ce and program´s algorithm, the generated models could 
greatly differ between each other (Lee et al., 2022). Hence, it 
is recommended to compare the 3D models obtained from 
multiple tools and validate them using Ramachandran plots 
or servers like ERRAT, PROCHECK and ProSA-Web.

On the other hand, it is necessary to simulate the im-
mune response induced by the vaccine, although sometimes 
the predictions do not match the results obtained in animal 
models (Rapin et al., 2010). Before preclinical evaluation, it is 
recommended to perform docking studies and immunoge-
nicity simulations. PatchDock, AutoDock Vina, and SwissDock 
are the best performing docking simulators, while C-IMMSIM 
server is widely used for immunogenicity due to the variety 
of results it provides.

Finally, vaccines designed through RV may be used 
either as a subunit vaccine or as nucleic acid vaccine. Both 
approaches demand gene codon usage optimization, thus 
the peptide must be reverse translated into DNA and gene 
constructs adapted to improve cloning and expression. Ser-
vers like NovoPro and JCat are commonly used in this task, 
and gene synthesis companies often offer this service. It is 
also recommended to re-run the allergenic prediction test 
to prevent possible hypersensitivity reactions (Woolums and 
Swiderski, 2021).

RV challenges and future perspectives in NWCL vaccine 
research
RV methodology significantly reduces experimentation 
efforts and costs in comparison with the conventional 

approach. Furthermore, new-generation vaccines desig-
ned using in silico tools have proved to be safe, stable, and 
efficient in human and animal vaccination. The ultimate 
advantages of RV are speed, accuracy, and efficiency. These 
features contribute to cost-effectiveness of the vaccine de-
velopment process, which is highly desirable in NTD research 
(Moxon et al., 2019).

However, in silico methods have drawbacks including 
failure in polysaccharide or glycolipid-derived antigens 
prediction, limited accuracy and reproducibility of antibody 
response simulation and immunogenic peptide ranking 
(Rappuoli, 2000). The RV approach is not inherently appli-
cable to vaccine antigens that exhibit excessive variability, 
complex structures, or binding instability. In consequence, all 
predicted epitopes must be tested in vivo to determine their 
immunogenicity (Wheeler, 2021).

To date, RV´s main limitation is the lack of a high-
throughput system to estimate memory immunity of selec-
ted candidates. Algorithms trained in a data set may not be 
able to make predictions in all proteomes or genomes, this 
fact is more evident when tools intended for one group of 
organisms are used to analyze information of an unrelated or 
distant species (Wheeler, 2021).

Although in silico methods present several drawbacks 
and shortcomings, their constant improvement through 
code development, AI-powered methods, and experimental 
validation has positioned bioinformatic methods as impor-
tant tools for rational vaccine design. Molecular target dis-
covery against L. mexicana is not a straightforward process, 
nevertheless bioinformatics tools combined with genetic 
engineering hold great promise due to their versatility.

New-generation vaccines in the reverse vaccinology 
era are promising strategies to design and develop vaccine 
candidates for human use. The foregoing approach has 
identified more potential vaccines against Leishmania than 
conventional approaches over the past 40 years. Considering 
this, it is not surprising that RV will be the method of choice 
for vaccinology studies in the near future.

CONCLUSIONS
RV has contributed to successfully identifying vaccine candi-
dates from L. mexicana. However, several challenges need to 
be solved before achieving this task. An effective vaccine for 
L. mexicana must induce cellular immune responses, some 
of which require antigen persistence to be maintained, thus 
improved antigens and adjuvants should be investigated.

RV and immunoinformatics approaches allow vaccine 
design and evaluation in a relatively short time, although 
the need to invest in research, new diagnostic, treatment, 
and prevention strategies against CL remains. Finally, these 
efforts are expected to contribute towards the development 
of new generation vaccines for NWCL, tailored to both the 
genetic makeup of the human and the pathogen.
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