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ABSTRACT

This study provides an in-depth genome analysis of Bacillus
paralicheniformis AA1, a bacterial strain isolated from a
traditional milpa farming system in Sonora, Mexico. The
genomic analysis revealed a high level of completeness,
demonstrated by the presence of a diverse and functionally
significant repertoire of genes associated with fundamental
biological processes, including nutrient assimilation, stress
response, and cellular regulation. Notably, the genome also
contains genes responsible for the biosynthesis of secondary
metabolites, highlighting its potential for biotechnological
applications. Taxonomic classification w as rigorously c on-
ducted using integrated genome-wide approaches, which
definitively confirmed the identification of iso late AA1 as
belonging to the species Bacillus paralicheniformis. Compa-
rative genomic analysis further established a high degree of
genetic similarity between AA1 and other B. paralicheniformis
strains with well-characterized biotechnological capabilities.
This similarity strongly suggests that AA1 harbors genetic
elements responsible for the synthesis of antimicrobial
compounds, enzymes with industrial relevance, and meta-
bolites that promote plant growth. The findings underscore
the potential of Bacillus paralicheniformis AA1 as a valuable
resource for biotechnology and sustainable agriculture. By
enhancing our understanding of microbial diversity within
traditional agroecosystems, this study contributes to the
broader knowledge base required for the development of in-
novative agricultural practices. Future research should focus
on functional validation of key genes to fully unlock AA1’s
potential as a bioresource for antimicrobial production, enzy-
me synthesis, and crop enhancement, paving the way for its
application in environmentally sustainable farming systems.
Keywords: Bacillus paralicheniformis, whole genome, geno-
mic analysis, sustainable agriculture.

RESUMEN

El presente estudio presenta un andlisis genémico de Bacillus
paralicheniformis AA1, una cepa bacteriana aislada de un sis-
tema agricola tradicional de milpa en Sonora, México. El ana-
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lisis gendmico reveld un alto nivel de integridad, evidenciado
por la presencia de un repertorio diverso y funcionalmente
significativo de genes asociados con procesos bioldgicos
fundamentales, incluyendo la asimilacion de nutrientes, la
respuesta al estrés y la regulacion celular. En particular, el ge-
noma también contiene genes responsables de la biosintesis
de metabolitos secundarios, lo que resalta su potencial para
aplicaciones biotecnoldgicas. La clasificacion taxondémica se
realizé rigurosamente mediante enfoques gendmicos inte-
grados, confirmando la identificacion de la cepa AA1 como
perteneciente a la especie B. paralicheniformis. El analisis
gendmico comparativo establecié ademas un alto grado
de similitud genética entre B. paralicheniformis AA1 y otras
cepas de B. paralicheniformis con capacidades biotecnolé-
gicas caracterizadas. Esta similitud sugiere que AA1 posee
elementos genéticos responsables de la sintesis de com-
puestos antimicrobianos, enzimas de relevancia industrial
y metabolitos que promueven el crecimiento vegetal. Los
hallazgos resaltan el potencial de B. paralicheniformis AA1
como una cepa valiosa para la biotecnologia y la agricultura
sostenible. Este andlisis contribuye al conocimiento necesa-
rio para el desarrollo de practicas agricolas innovadoras al
mejorar nuestra comprension de la diversidad microbiana en
agroecosistemas tradicionales. Las investigaciones derivadas
de este estudio deberan centrarse en la validacién funcional
de genes clave para comprender completamente el poten-
cial de AA1 en la produccion de antimicrobianos, la sintesis
de enzimas y su aplicacién en sistemas agricolas sostenibles.
Palabras clave: Bacillus paralicheniformis, genoma comple-
to, andlisis genédmico, agricultura sustentable.

INTRODUCTION

Bacteria exhibit a ubiquitous presence across diverse environ-
ments, spanning terrestrial and marine habitats, where they
play diverse ecological roles (Delgado-Baquerizo et al., 2018).
Among these, a range of different species within the genus
Bacillus are commercially available biopesticides because of
their capacity to synthesize a diverse group of antimicrobials,
nematicidal, and insecticidal metabolites (Steinke et al., 2021;
Suetal., 2020).
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In recent years, Bacillus paralicheniformis has gained
attention for its remarkable characteristics, including its
ability to produce antimicrobial bioactive substances and
thrive in challenging environments (Ashajyothi et al., 2024;
Igbal et al., 2023). From an agrobiotechnology perspective,
B. paralicheniformis is an interesting source for biofertilizer
development due to its multifaceted capabilities (Swietczak
et al., 2023). These include the production of bioactive mo-
lecules that stimulate plant growth (e.g., indoleacetic acid,
siderophores, ACC deaminase), enhancement of plant nutri-
tion through nutrient solubilization (iron, phosphorus, and
potassium), and inhibition of phytopathogen attacks either
via antimicrobial production or by triggering plant immune
responses (Chavarria-Quicafo et al., 2023; Jinal et al., 2020).
This particular Bacillus specie has demonstrated successful
applications across a variety of economically significant
crops, including tomato (Diaz-Manzano et al., 2023), mango
(Hemangini et al., 2018), chili (Pawaskar, 2023), highlighting
its biotechnological relevance.

Milpa farming systems, characterized by the cultivation
of multiple crop species such as maize, beans, herbs, and
grass, have been linked to elevated soil microbial diversity in
comparison to monocultures (Fonteyne et al., 2023). In these
highly diverse microbiomes, microbe-microbe interactions,
involving both competition and cooperation, are naturally
intensified. Consequently, microbes thriving in such envi-
ronments often possess an interesting set of genes enabling
them to effectively compete and collaborate with other
microbial inhabitants, while also adapting to the selective
pressures exerted by the varied root exudates of different
plant species (Compant et al., 2019). This characteristic makes
milpa production systems a promising reservoir of microbes
with interesting biotechnological potential. In this work, we
present the genome assembly of one of the most abundant
bacterial isolates (strain AA1) recovered from a conventional
milpa farming system in the northwestern region of Sonora,
Mexico. The aim of this genome sequence announcement is
to report the draft genome sequence of Bacillus paraliche-
niformis strain AA1, a rhizospheric bacterium isolated from
a traditional milpa farming system in Sonora, Mexico. This
genome provides insights into the genetic basis of its poten-
tial for biotechnological applications, including secondary
metabolite biosynthesis, stress response, and plant growth
promotion, and contributes to the understanding of micro-
bial diversity in traditional agroecosystems.

MATERIALS AND METHODS

Sample collection

Soil samples were collected from a milpa production system
at the Technological Institute of Sonora in the northwest
region of Sonora, Mexico. The location is 27°29'46"N
109°58'18"W, and the elevation is 40 m above sea level. Du-
ring May, the area typically receives temperatures of 27.5 °C
and an average rainfall of 2.0 mm (based on a local weather
station, CONAGUA). During the vegetative phase of the mai-
ze growth cycle in May 2023, three composite soil samples

Volume XXVII

weighing about 1 kg each were randomly obtained from
three separate locations. The depth at which the samples
were collected was 20 cm, using sterile tools and sampling
bags. The soil samples were subsequently examined for
microbial analyses in the laboratory after being carried in a
cooler maintained at 4 + 2 °C.

Microbiological analysis

Bacillus isolation was carried out as follows; ten grams of
each sample were dissolved in 90 mL of distilled water and
heated to 80 °C for 15 min (Wen et al., 2022). After diluting the
solution with sterile water, 0.1 mL of the mixture was equally
spread out on Luria Bertani (LB) (Sigma-Aldrich®) agar plates.
The plates were then placed in an aerobic incubator at 37
°C for 24 h. The colonies were then prepared for microsco-
pic morphological identification using Gram staining and
subjected to purification. Among the isolates, strain AA1
was one of the most abundant and consistently observed
colony types across replicate plates. This strain was purified
by repeated streaking on fresh nutrient agar plates until
a uniform, morphologically consistent colony phenotype
was obtained, ensuring clonality of the isolate. The purified
strain AA1 was stored at -80 °C in LB broth (Sigma-Aldrich®)
supplemented with 20% glycerol for further molecular and
genomic analyses (Lavanya et al., 2021).

DNA extraction and sequencing

Strain AA1 was grown in Trypticase Soy Broth (TSB) at 37 °C
for 24 h. An axenic culture of the strain was subsequently
sent to The Sainsbury Laboratory (Norwich, United King-
dom), where the downstream genomic procedures were
carried out. At The Sainsbury Laboratory, genomic DNA
was extracted using the DNeasy Blood & Tissue Kit (Qiagen,
Cat. No. 69504), following the manufacturer’s instructions.
The purity and concentration of the extracted DNA were
assessed spectrophotometrically. Library preparation and
high-throughput sequencing were then performed on the
Illumina NovaSeq platform (2x250 bp), according to standard
protocols. All procedures related to DNA isolation, quality
control, and sequencing were conducted by The Sainsbury
Laboratory team.

Bioinformatic analyses

Genome assembly was conducted using SPAdes genome as-
sembler (version 3.15.4) (Bankevich et al., 2012). The resulting
assembly was submitted to NCBI Prokaryotic Genome An-
notation (PGAP) pipeline for i) prediction of protein-coding
genes, ii) determination of RNAs, tRNAs, and pseudogenes,
iii) gene annotation and iv) genome completeness and con-
tamination assessment (Tatusova et al., 2016). Additionally,
KOs and COGs assignments were executed using anvi'o v8
(Eren et al., 2020), these annotations provide insights into
the metabolic potential and ecological roles of the strain by
linking genes to known biological pathways (via KOs) and to
evolutionarily conserved functional categories (via COGs).
Phylogenomics analysis was performed using GtoTree pi-
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peline (Lee, 2019), while a pangenomics-based tree and ANI
identity matrix were generated using anvi'o v8 (Eren et al.,
2020). The genome map was generated using Proksee (Grant
etal., 2023).

Data availability

The whole genome sequence was submitted to DDBJ/
ENA/GenBank and assigned the accession number JA-
YMDMO000000000. The sequenced strain’s BioProject da-
tabase accession number is PRINA1061142. The project’s
Sequence Read Archive information can be accessed using
the accession number SRR27458597.

RESULTS AND DISCUSSION

Milpa farming systems represent a valuable reservoir of mi-
croorganisms with potential biotechnological applications.
To explore this microbial diversity, we collected rhizospheric
soil samples from a traditional milpa production system loca-
ted at the Technological Institute of Sonora in the northwest
region of Sonora, Mexico. Bacterial isolation was performed
using the serial dilution method on nutrient agar plates. After
incubation, colonies with distinct morphological features
were selected and subjected to Gram staining to facilitate
preliminary identification. Among the isolates, one of the
most abundant and consistently observed colonies was
designated as strain AA1, which was further purified through
successive streaking on fresh agar plates until a morphologi-
cally uniform culture was obtained. Strain AA1 was selected
for whole genome sequencing based on its stable association
with the rhizosphere environment, with the aim of exploring
its genetic repertoire potentially linked to plant-microbe
interactions and environmental adaptability.

AA1 sequencing results in a high-quality genome assem-
bly

To gain insights into the genetic features facilitating the pro-
liferation of this strain within the studied milpa system, ge-
nomic DNA (gDNA) was isolated, sequenced, and assembled
the obtained sequencing reads using the SPAdes assembler.
The sequencing achieved an average genome coverage of
approximately 56x (mean coverage: 55.99; mean coverage
excluding 0s: 55.99), considered adequate for high-quality
genome assembly. The de novo genome assembly resulted
in a total of 39 contigs, 10 contigs with sizes larger than 50
kb, and the largest contig of 1071 kb (Figure 1A and 1B) with
a total genome length of 4,318,295 bp, a GC content of 46.06
%, and an N50 value of 701,491 bp. Next, we submitted our
genome to the Prokaryotic Genome Annotation Pipeline
(PGAP) to identify genome features of AA1 (e.g.,, CDSs, RNAs,
tRNAs, and pseudogenes) and perform genome complete-
ness and contamination assessment. This analysis indicated
high genome completeness (99.41 %) and no contamination
(0%) (Figure 1C). Additionally, PGAP predicted i) a total of
4400 genes, of which 4212 correspond to protein-coding se-
quences and 75 pseudogenes, ii) 26 ribosomal RNAs (rRNAs),
of which 9, 7, and 12 correspond to 5S, 16S, and 23S rRNA,

respectively, and iii) 80 tRNAs and 5 ncRNAs (Figure 1C). Ac-
cording to NCBI Prokaryotic Genome Annotation Standards
(Klimke et al., 2011), the minimum standards to consider
a genome complete are i) at least one copy of each rRNA
(5S, 165, 23S), ii) at least one copy of tRNAs for each amino
acid and iii) Protein-coding genes count divided by genome
length close to 1. Overall, our genome assembly surpasses
the assemblies of previous studies (Berais-Rubio et al., 2023;
Berriel et al, 2021) and meets NCBI standards, indicating
suitable assembly to explore the genomic information of this
isolate.

The sequenced genomes of Bacillus paralicheniformis
exhibit a consistent genome size ranging from approxima-
tely 4.16 to 4.55 Mb, with a stable GC content around 45.3%
to 46.1% (Agersg et al., 2019; Albdaiwi et al., 2022; Chebotar
et al., 2024; Olajide et al, 2021). These genomes typically
encode between 3,981 and 4,478 protein-coding genes,
alongside a complement of rRNAs and tRNAs, reflecting a
well-conserved genetic architecture (Albdaiwi et al., 2022;
Olajide et al., 2021).

Genome-wide analysis reveals AA1 is a Bacillus paraliche-
niformis strain
Taxonomic identification of bacterial isolates is a crucial step
in bioprospection, as it enables us to gain insights into their
biotechnological or pathogenic potential. In this work, we
initially explore the taxonomic affiliation of strain AA1 by
performing a BLAST using 16S rRNA, a highly conserved and
widely used prokaryotic taxonomic marker (Kim and Chun,
2014).Thus, we observed that the 16S rRNA sequence of stra-
in AA1 is highly conserved with some isolates of B. lichenifor-
mis (100% identity/coverage) and B. paralicheniformis (100%
identity/coverage), suggesting that strain AA1 could belong
to one of these taxonomic groups. While useful, 16S rRNA-
based bacterial classification has the disadvantage that some
bacteria may share high similarity with other members of the
same family (Bars-Cortina et al., 2023), as observed here.
Hence, we conducted an integrated genome-wide ap-
proach to taxonomically classify strain AA1 (Figure 2). First,
we performed a phylogenomic analysis using 119 single-
copy gene (SCG) markers commonly used in firmicutes
(Figure 2A), alongside 38 Bacillus representative accessions
retrieved from the Genome Taxonomy Database (Parks et al.,
2022). This analysis facilitated the identification of different
Bacillus species (B. paralicheniformis, B. licheniformis, B. hay-
nesii, B. sweneyi, B. pumilus) closely related to AA1 strain. Sub-
sequently, a pangenome-based tree was constructed using
high-quality complete genomes (including type strains) of
closely related species, obtained from EZbiocloud (www.
ezbiocloud.net). This approach clusters genomes based on
the presence or absence of predicted coding regions. Our
pangenome-based tree reveals three distinct groups, with
the AA1 genome present in group 1, clustering alongside B.
paralicheniformis genomes. This clustering strongly suggests
AA1 affiliation with this taxonomic group. Lastly, we con-
ducted an Average Nucleotide Identity (ANI) analysis using
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Figure 1. Genome assembly and statistics of AA1 genome. A) Quality information of AA1 genome assembly. B) AA1 circular genome
map. From the innermost to the outermost rings; GC skew, GC content, CDS in minus (-) strand, CDS in plus (+) strand. C) AAT genome

information determined by PGAP pipeline.

Figura 1. Ensamblaje y estadisticas del genoma de AA1. A) Informacion de calidad del ensamblaje del genoma de AA1. B) Mapa
circular del genoma de AA1. De los anillos mas internos a los mas externos: sesgo de GC, contenido de GC, CDS en la cadena negativa
(-), CDS en la cadena positiva (+). C) Informacion genémica de AA1 determinada mediante el pipeline PGAP.

genomes within group 1. In bacterial taxonomy, species are
typically distinguished based on an ANI threshold of 95%
(Arahal, 2014). Our analysis revealed that AA1 exhibits an
ANI value higher than 95% when compared to any of the B.
paralicheniformis genomes included in the study. This result
shows that strain AA1 can unequivocally be classified as Ba-
cillus paralicheniformis. Noteworthy, this Bacillus species has
been associated with multiple traits with biotechnological
relevance (Hemangini et al., 2018; Jinal et al., 2020), sugges-
ting that strain AA1 could harbor some of these traits.
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Genome annotation and comparative genomics reveal
functional traits in Bacillus paralicheniformis AA1 asso-
ciated with biotechnological applications

In bacterial bioprospection, genome annotation is an essen-
tial step since it facilitates the identification of the functional
elements found in the genome. This process provides va-
luable insights that could reveal potential biotechnological
applications for bacterial isolates. In this sense, we perform
the genome annotation of Bacillus paralicheniformis AA1 to
gain insight into their potential biological functions. To this
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Figure 2. Genome-wide analysis determines AA1 taxonomy. A) Phylogenomic analysis using a single copy gene (SCG)
set for Firmicutes (119 genes). B) Pangenome-based tree using closely related species determined in phylogenomic
tree using SCG. Asterisks denote type strains retrieved from EZbiocloud (www.ezbiocloud.net). Each line represents a
genome. Filled-colored lines (Green to gray for B. licheniformis, B. paralicheniformis, B. haynesii, B. sweneyi, B. pumilus, and
B. velezensis, respectively) represent the presence of a gene, while lighter color represents the absence of a gene. C) ANI
identity matrix using strains present AA1 clade in the pan genome-based tree.

Figura 2. El analisis a nivel genomico determina la taxonomia de AA1. A) Anélisis filogenémico utilizando un
conjunto de genes de copia Unica (SCG) para Firmicutes (119 genes). B) Arbol basado en el pan-genoma utilizando
especies estrechamente relacionadas determinadas en el arbol filogendémico con SCG. Los asteriscos indican cepas tipo
recuperadas de EZbiocloud (www.ezbiocloud.net). Cada linea representa un genoma. Las lineas coloreadas y rellenas (de
verde a gris para B. licheniformis, B. paralicheniformis, B. haynesii, B. sweneyi, B. pumilus y B. velezensis, respectivamente)
representan la presencia de un gen, mientras que los colores mas claros indican su ausencia. C) Matriz de identidad ANI
utilizando cepas presentes en el clado AA1 en el arbol basado en el pan-genoma.
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end, we use an integrated approach using different annota-
tion systems (PGAP, KEGG, COG). A total of 3827, 3427, and
2971 genes were annotated with PGAP, COG, and KEGG sys-
tems, respectively, displaying multiple overlaps in the anno-
tated genes (Figure 3A). Overall, with our approach, we were
able to retrieve biological information from around 91% of
the coding sequences (Figure 3A). Within the AA1 genome,
there is an overrepresentation of genes linked to fundamen-
tal biological processes essential for cellular function. These

include genes involved in i) carbohydrate metabolism (345
genes), ii) transcription (303 genes), iii) amino acid metabo-
lism and transport (301 genes), and iv) translation, ribosomal
structure, and biogenesis (245 genes). Noteworthy, Bacillus
paralicheniformis AA1 has 81 genes involved in secondary
metabolite biosynthesis (Figure 3B), which suggests that this
strain could produce several metabolites with biotechnolo-
gical potential.

Figure 3. Genome annotation of Bacillus paralicheniformis AA1. A) Upset plot displaying overlaps
of gene annotations by multiple annotation systems. B) Distribution of Clusters of Orthologous Genes
(COG) categories within the AAT genome, with respective gene counts indicated.

Figura 3. Anotacion gendmica de Bacillus paralicheniformis AA1. A) Gréfico de tipo Upset que
muestra la superposicion de anotaciones génicas por multiples sistemas de anotacién. B) Distribuciéon
de las categorias de Clusters of Orthologous Genes (COG) dentro del genoma de AA1, con el niUmero

respectivo de genes indicado.
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Over the last years, several Bacillus paralicheniformis
representatives with biotechnological potential have been
studied. This can be exemplified in a recent study where a
comprehensive genome analysis of Bacillus paralicheniformis
BP9 revealed this strain has multiple interesting biotechno-
logical traits, such as production of secondary metabolites
(bacillibactin, fengycin, bacitracin, and lantibiotics), genes
involved in niche competition, and genes involved in plant
growth promotion (Asif et al., 2023a). Similarly, genome-wide
analysis in other Bacillus paralicheniformis strains, TRQ65 and
KMS 80, evidenced similar traits (Annapurna et al., 2018;
Valenzuela-Ruiz et al., 2019).

Molecular markers such as the antibiotic resistance
genes aadK and aph are conserved and co-located within the
chromosome, while the presence of the fengycin biosynthe-
tic operon distinguishes B. paralicheniformis from closely
related Bacillus species (Agersg et al., 2019; Asif et al., 2023b).
Importantly, the genomes harbor multiple biosynthetic gene
clusters responsible for the production of secondary meta-
bolites, including bacitracin, fengycin, butirosin, lichenysin,
bacillibactin, pulcherriminic acid, schizokinen, and geobaci-
llin Il, underscoring their significant antimicrobial potential
(Albdaiwi et al, 2022; Chebotar et al, 2024). Additionally,

genes involved in abiotic stress tolerance, nitrogen fixation,
phosphate mobilization, and auxin production highlight
their capacity to promote plant growth and resilience, par-
ticularly under saline or stressful environmental conditions
(Igbal et al., 2023).

In this work, we perform a comparative genomic analy-
sis using AAT alongside these strains exhibiting biotechno-
logical traits (Figure 4). Our analysis reveals that while each
strain harbors a unique set of genes, a high overlap exists
(ANI > 99 %), with more than 4300 genes shared among
them. Furthermore, we observe that strain AA1 shares a clo-
ser genomic content, particularly in terms of gene presence/
absence, with the BP9 strain. The high overlap of genes bet-
ween strain AA1 and other Bacillus paralicheniformis strains
known for their biotechnological applications indicates that
AA1 harbors promising genetic elements. Collectively, these
genomic features position Bacillus paralicheniformis as a
promising candidate for biotechnological applications, espe-
cially as a biocontrol agent and microbial inoculant in sustai-
nable agriculture. Nonetheless, a future analysis focusing on
identifying and validating AA1 biotechnological traits must
be undertaken.

Figure 4.illustrates the comparative genomics of Bacillus paralicheniformis
AA1 alongside other strains known for their biotechnologically relevant
traits within the species. Each line in the graph represents a genome, with
black-filled segments indicating the presence of a gene and lighter sections
denoting gene absence. Additionally, unique genes present in the analyzed
genomes are specifically highlighted.

Figura 4. Gendmica comparativa de Bacillus paralicheniformis AA1 con
otras cepas conocidas por sus rasgos relevantes en biotecnologia dentro
de la especie. Cada linea en el gréfico representa un genoma, con segmentos
negros rellenos que indican la presencia de un gen y secciones mas claras que
denotan su ausencia. Ademads, se destacan especificamente los genes Unicos
presentes en los genomas analizados.
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CONCLUSION

The genome analysis of Bacillus paralicheniformis AA1, isola-
ted from a milpa farming system in Sonora, Mexico, reveals
a wealth of genetic features that underscore its potential
biotechnological applications. This study enhances our un-
derstanding of the microbial diversity associated with milpa
ecosystems and highlights the capacity of such microorga-
nisms to contribute to sustainable agricultural practices. The
findings lay a foundation for exploring AA1’s functional roles,
particularly in antimicrobial compound synthesis, industrial
enzyme production, and plant growth promotion. Future re-
search focused on identifying and characterizing specific ge-
nes responsible for these traits will be pivotal in fully realizing
the biotechnological promise of Bacillus paralicheniformis
AA1, potentially offering innovative solutions for agriculture
and biotechnology.
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