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ABSTRACT
To assess the physiological status and photosynthetic activi-
ty of sixteen microalgae strains isolated from Baja California, 
growth estimations and in vivo chlorophyll a (Chl-a) fluores-
cence measurements were performed. The bacillariophyte 
Diploneis sp. exhibited the highest growth rate, while the hig-
hest cell densities were observed in Tetraselmis suecica and 
Navicula sp. strain 2. Most strains showed effective maximum 
quantum yield (Fv/Fm) values above 0.50. The highest values 
of maximum electron transport rate (ETRm) and saturation 
irradiance (Ik) were recorded for Amphora sp. strain 6 and 
Heterococcus sp. The diatom Navicula sp. strain 4 showed the 
highest content of chlorophyll a and carotenoids. The culture 
conditions used in this study were not stressful for the mi-
croalgae strains. Notably, T. suecica showed high maximum 
cell density and Fv/Fm values; Amphora sp. strain 6 exhibited 
the highest electron transport rate (ETRm) and elevated sa-
turation irradiance (Ik). This work highlights the interspecific 
variability in physiological and photosynthetic traits among 
native strains, which can be promising candidates for aqua-
culture and biotechnology applications requiring robust 
photosynthetic performance.
Keywords: Microalgae; growth rate; chlorophyll a fluores-
cence; photosynthesis performance; electron transport rate.

RESUMEN
Para evaluar el estado fisiológico y la actividad fotosintética 
de dieciséis cepas de microalgas aisladas de Baja California, 
se realizaron estimaciones de crecimiento y mediciones de 
fluorescencia in vivo de clorofila a (Chl-a). La bacilariofita 
Diploneis sp. presentó la mayor tasa de crecimiento, mientras 
que las mayores densidades celulares se observaron en 
Tetraselmis suecica y Navicula sp. cepa 2. La mayoría de las 
cepas mostró valores efectivos de rendimiento cuántico 
máximo (Fv/Fm) superiores a 0.50. Los valores más altos de 
tasa máxima de transporte de electrones (ETRm) e irradiancia 
de saturación (Ik) se registraron en Amphora sp. cepa 6 y en 
Heterococcus sp. La diatomea Navicula sp. cepa 4 presentó 
el mayor contenido de clorofila a y carotenoides. Las condi-
ciones de cultivo utilizadas en este estudio no fueron estre-
santes para las cepas de microalgas. En particular, T. suecica 
mostró alta densidad celular máxima y valores elevados de 
Fv/Fm; Amphora sp. cepa 6 presentó la mayor tasa de trans-

porte de electrones (ETRm) e irradiancia de saturación (Ik) 
elevada. Este trabajo resalta la variabilidad interespecífica en 
los rasgos fisiológicos y fotosintéticos entre cepas nativas, las 
cuales pueden ser candidatas promisorias para aplicaciones 
en acuicultura y procesos biotecnológicos que requieren un 
desempeño fotosintético robusto.
Palabras clave: microalgas; tasa de crecimiento; fluorescen-
cia de clorofila a; desempeño fotosintético. 

INTRODUCTION
Marine phytoplankton are diverse communities of microsco-
pic photosynthetic organisms that play a fundamental role 
in global biogeochemical cycles. They account for approxi-
mately 50 % of the Earth’s primary productivity (Crockford 
et al., 2023) and include cells ranging from 0.2 to 2000 µm 
in size (Haëntjens et al., 2022). The major taxonomic groups 
contributing to marine productivity include bacillariophytes, 
dinoflagellates, and coccolithophores. Additional contribu-
tors to marine diversity and productivity are green algae, 
cyanobacteria, haptophytes, cryptophytes, and eugleno-
phytes (Simon et al., 2009; Calbet, 2024). Despite the high 
diversity of phytoplankton, only a fraction of 30,000 existing 
species have been formally described to date (Thoré et al., 
2023). Thus, continued efforts in isolating, describing, and 
characterizing marine microalgae species are essential to 
better understand ocean productivity and to explore their 
potential applications in aquaculture, biotechnology, and 
the food industry.

One approach to characterizing microalgae involves 
assessing their photosynthetic performance through chlo-
rophyll fluorescence measurements. These measurements 
provide insights into the physiological status of phytoplank-
ton cells (Juneau and Harrison, 2005) and are commonly ob-
tained using Pulse Amplitude Modulation (PAM) fluorometry 
(Figueredo et al., 2009). These devices focus on Photosystem 
II (PSII), and key parameters—such as the maximum quan-
tum yield (Fv/Fm), electron transport rate (ETR), saturation 
irradiance (Ik), and photosynthetic efficiency (α)—which are 
widely used to evaluate cellular responses under varying en-
vironmental conditions (White et al., 2011; Sánchez-Saavedra 
et al., 2018; Vani et al., 2023; Krivina et al., 2023).

A previous study by Jiménez-Valera and Sánchez-Saave-
dra (2016) characterized the growth and fatty acid profiles of 
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21 microalgae strains isolated from the northeastern coastal 
waters of Baja California, Mexico. That study highlighted the 
biotechnological potential of these strains, particularly for 
aquaculture, due to favorable attributes such as small cell 
size, rapid growth, absence of toxicity, and the presence of 
polyunsaturated fatty acids (PUFAs), which are essential 
nutrients for fish, crustaceans, and mollusk larvae. However, 
no information is yet available on the photosynthetic perfor-
mance of these strains.

The objective of this work was to evaluate the pho-
tosynthetic response of 16 microalgae strains isolated from 
Baja California, Mexico, to identify suitable light levels for 
their cultivation and optimization. These results provide a 
basis for future studies on the potential applications of these 
strains in aquaculture and biotechnology.

MATERIAL AND METHODS
Microalgae strain characteristics
We used 16 microalgae strains previously isolated by Jimé-
nez-Valera and Sánchez-Saavedra (2016) from coastal waters 
of Ensenada and San Quintín in Baja California, and Mulegé 
in Baja California Sur, Mexico. The strains included the chloro-
phyte Tetraselmis suecica, the xanthophyte Heterococcus sp., 
and 14 bacillariophytes: Amphora sp. (strains 1, 2, 4, 5, 6, and 
7), Navicula sp. (strains 2, 3, and 4), Cymbella sp. (strains 1 and 
2), Nitzschia thermalis, Diploneis sp., and Rhabdonema sp.

Non-axenic, monospecific cultures were maintained in 
250 mL Erlenmeyer flasks containing 100 mL of “f” medium 
(Guillard and Ryther, 1962) at 20 °C, salinity of 33 ± 1 ‰, and 
under continuous light (24 h) at an irradiance of 50 µmol 
photons m-2 s-1, provided by cool white fluorescent lamps. 
After 10 d of preculture, the microalgae were inoculated into 
fresh 100 mL “f” medium in new 250 mL flasks and maintained 
under identical culture conditions with daily manual stirring. 
All microalgae strain cultures were carried out in triplicate. 
Initial cell densities were 0.05 x106 cells mL-1 for Rhabdonema 
sp. and Diploneis sp., 0.1 x106 cells mL-1 for Navicula sp. strain 3 
and Amphora species, 0.25 x106 cells mL-1 for N. thermalis and 
Cymbella sp. strains 1 and 2, 0.4 x106 cells mL-1 for Heterococ-
cus sp., and 1.0 x106 cells mL-1 for T. suecica.

Cell density and maximum cell density (MCD) were 
measured every 48 h over 12 d using direct cell counts with 
a hemocytometer and compound microscope (Olympus 
CX-31, Japan). Growth rate (µ) and generation time (GT) were 
calculated using the equations described by Fogg and Thake 
(1987). For the growth rate:

𝜇𝜇 =
(log2𝑁𝑁2) − (log2𝑁𝑁1)

𝑡𝑡2 −  𝑡𝑡1
                       �   Eq. (1)

Where, μ is the specific growth rate; N2 is the cell con-
centration at the end of the exponential growth phase; N1 is 
the cell concentration at the beginning of the exponential 
growth phase; Log2 is the logarithm base 2 of the cell con-
centration; t2 the final time of the exponential growth phase; 
and t1 initial time of the exponential growth phase. 

Generation time was calculated according to the fo-
llowing equation:

TG = 1/μ                                � Eq. (2)

Where TG is the generation time and μ is the growth rate. 

Pigment determination
Chlorophyll a (Chl-a), chlorophyll b (Chl-b), chlorophyll c (Chl-
c), and total carotenoids were extracted following Parsons et 
al. (1984). Samples of 5 mL of each microalgae culture were 
filtered through 25 mm glass fiber filters (GF/C, 1 µm pore 
size). The filtered samples were extracted with 3 mL of 90 % 
acetone solution, incubated overnight at 4 °C in darkness, 
and spectra (400 to 750 nm) were recorded using a spec-
trophotometer (HACH DR-6000, HACH, USA). Data obtained 
were used to calculate pigment concentrations according to 
Jeffrey and Humphrey (1975):
Chl- a (μg mL-1) = – 0.08 A630 – 1.54 A647 + 11.85 A664  � Eq. (3)

Chl-b (μg mL-1) = – 2.66 A630 + 21.03 A647 – 5.43 A664        �Eq. (4)

Chl-c (μg mL-1) = 24.52 A630 – 7.60 A647 – 1.67 A664                    � Eq. (5)

Carotenes (μg mL-1) = 7.6 A480 – 1.49 A510                     � Eq. (6)

Final concentration = mg pigment m-3 = 
𝐶𝐶 𝑥𝑥 𝑣𝑣 

𝑉𝑉 𝑥𝑥 10                      Eq. (7)

where: A is the corrected absorbance at the wavelength 
indicated; C is the concentration of each pigment calculated 
according to equations 3 to 6; v is the 90 % acetone volume 
used for the extraction (expressed in mL), and V is the sample 
volume filtered (expressed in liters). Wavelength corrections 
were applied by subtracting 1x the absorbance of 750 nm 
from the absorbances of 630, 647, and 664 nm; 2x from the 
absorbance at 510 nm, and 3x from the absorbance at 480 
nm. Pigment concentrations were expressed in µg mL-1 to 
represent the content for each microalgae strain. For absorp-
tion measurements used in the estimation of photosynthetic 
parameters, pigment concentrations were expressed as mg 
m-3.

In vivo chlorophyll a fluorescence measurements
Photosynthetic activity was assessed on day 3 by measuring 
in vivo chlorophyll a fluorescence. Triplicates of 10 mL sam-
ples, a sample from each flask, were dark-adapted for 20 min 
to oxidize the PSII reaction centers. Rapid light curves (RLC) 
were obtained with a pulse-amplitude modulation fluorome-
ter (Junior-PAM, Heinz Walz, GmbH, Germany) operated with 
WinControl software. To ensure optimal signal quality across 
replicates and species, settings of intensity, frequency, and 
gain of actinic light were adjusted to achieve a fluorescence 
yield (Ft) between 200 and 400 mV. The RLC measurements 
followed the Universal Light curve protocol (WinControl), 
and electron transport rate (ETR) was calculated according to 
Schreiber et al. (1995):

https://en.wikipedia.org/wiki/Per_mille
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𝐸𝐸𝑇𝑇𝑇𝑇 = Δ𝐹𝐹
𝐹𝐹´𝑚𝑚

∗ 𝑎𝑎∗(𝜆𝜆) * E * FII (µmol e- (mg Chl-a)-1 m-2 s-1)      �(Eq. 8)

For this, the effective quantum yield (ΔF/F´m) is calculated 
according to Schreiber et al. (1995) as:

Δ𝐹𝐹
𝐹𝐹´𝑚𝑚

  = (F´m - Ft) / F´m                                           � (Eq. 9)

Where, F´m is the maximum fluorescence induced by a 
saturating light pulse; Ft is the steady-state fluorescence of 
light-adapted algae; a*(λ) is the chlorophyll a (Chl a) specific 
absorption of phytoplankton based on the chlorophyll a con-
tent (expressed in mg m-3); E is the photosynthetically active 
radiation (PAR) (expressed in µmol m-2 s-1); FII is the fraction 
of light absorbed by photosystem II. The FII values were 
obtained from Johansen and Sakshaug (2007) and were 0.8 
for bacillariophytes and 0.5 for chlorophyte and xantophyte. 
To calculate the absorption coefficient a(λ) was obtained as 
follows: 

𝑎𝑎(𝜆𝜆)=(2.303 ODλl-1) / Chl a content (mg m-3)                    (Eq. 10)

where ODλ is the spectral optical density in the visible 
range (400 to 750 nm), and 2.303 is the conversion factor 
from base-10 logarithm to natural logaritm (log10/loge). The 
maximum quantum yield of PSII (Fv/Fm) was calculated 
using the following equation:

Fv/Fm= (Fm-F0)/Fm                                � ( Eq. 11)

where Fm is the maximmun fluorescence and F0 is the 
minimum fluorescence. 

Photosynthetic parameters—maximum electron trans-
port rate (ETRm), photosynthetic efficiency (α), and saturation 
irradiance (Ik)—were estimated from Fo an d Fm´ values 
obtained from rapid light curves, from absrotance a*(λ) as 
calculated as previously described, and from the fraction 
of light absorbed by photosystem II (FII), dependig on the 
microalgae group analyzed. This information was integrated, 
and photosynthetic parameters were calculated using the 
hyperbolic tangential function of Eilers and Peeters (1988).

Statistical analysis
Normality and homoscedasticity of data were verified. Diffe-
rences in growth, pigment concentrations, and photosynthe-
tic parameters were analyzed using the Kruskal-Wallis test, 
followed by a Tukey a posteriori test when significant diffe-
rences were found. Statistical significance was set at p < 0.05. 
Data were analyzed using Statistica 7.0, and graphs were 
generated with Origin Pro 8.0.

RESULTS AND DISCUSSION
Microalgae strains exhibited significant differences in 
growth parameters (p < 0.05) (Table 1, Figure 1). The highest 
growth rates (µ) were observed in the diatoms Diploneis sp. 
(0.52 ± 0.02 divisions d-1), Navicula sp. strain 3 (0.41 ± 0.04 

divisions d-¹), and Amphora sp. strain 5 (0.35 ± 0.04 divi-
sions d-¹). In contrast, the xanthophyte Heterococcus sp. 
showed the lowest growth rate (0.16 ± 0.01 divisions d-¹). An 
inverse trend was observed for generation time (GT): Hetero-
coccus sp. had the longest GT (6.19 ± 0.25 ds), while Diploneis 
sp. showed the shortest (1.69 ± 0.38 ds). On average, most 
strains remained in exponential growth for 8 ds; however, 
Amphora sp. strain 26, Nizschia thermalis, and Cymbella sp. 
strain 2 showed extended exponential phases of 13, 11, and 
11 d, respectively. The shortest exponential growth phases 
were observed in Navicula sp. strain 3, Cymbella sp. strain 
1, and Amphora sp. strain 2, with durations of 7, 7, and 5 d, 
respectively.The growth rates of all microalgae strains in this 
study were lower than those reported by Jiménez-Valera and 
Sánchez-Saavedra (2016), who conducted a preliminary cha-
racterization of the same strains. This reduction may be attri-
buted to longer exponential growth phases observed in our 
cultures, which typically lower the calculated growth rate. For 
Navicula sp. (0.35 divisions day-¹) and Cymbella sp. (0.30 divi-
sions day-¹), growth rates were similar to those reported by 
other authors (Correa-Reyes et al., 2001; Khatoon et al., 2010). 
The chlorophyte Tetraselmis suecica and the diatoms Navicula 
sp. strain 2 and Nizschia thermalis reached the highest cell 
densities (46.79 ± 0.38, 46.37 ± 2.18, and 44.49 ± 1.59 × 10⁵ 
cells mL-1, respectively). Conversely, Cymbella sp. strain 1 and 
Diploneis sp. exhibited the lowest densities (3.65 ± 0.25 × 10⁵ 
cells mL-¹ for both). In this study, Tetraselmis suecica, Navicula 
sp. strain 2, and Nizschia thermalis reached values close to 4 
× 10⁶ cells mL-¹, which were higher than those observed by 
Jiménez-Valera and Sánchez-Saavedra (2016). Temperature, 
medium, and agitation conditions used in this study were 
the same as those used by Jimenez-Valera and Sánchez Saa-
vedra (2016), except for the irradiance level. Thus, differences 
in growth rate may be attributed to variations in irradiance 
conditions: we used 50 µmol m-2 s-¹, whereas the previous 
study used 100 µmol m-2 s-¹.

Tetraselmis suecica is a widely studied species due to its 
importance in aquaculture and biotechnology (Grabowsky, 
2017; Rentería-Mexía et al., 2022). In aquaculture, T. suecica is 
one of the most commonly used microalgae species as feed 
for fish, crustaceans, and mollusk larvae due to its cell size, 
biochemical composition, ease of culture, and digestibility 
(Yiğitkurt et al., 2025). This microalgae species is widely used 
in wastewater bioremediation (Andreotti et al., 2020), as a 
startategy to control the density of pathogenic Vibrio species 
(Smahajcsik et al., 2025), and for the production of com-
pounds with anticancer, antibacterial, and anti-inflamatory 
activities (Rentería-Mexía et al., 2022). The higher cell den-
sities observed here, compared with previous studies, are 
likely related to differences in nutrient availability, salinity, 
photoperiod, and possibly strain variation.

Another relevant factor influencing growth is the initial 
inoculum density. In our study, higher inoculum concentra-
tions may have contributed to lower growth rates, consistent 
with findings by Jiménez-Valera and Sánchez-Saavedra 
(2016) and Michels et al. (2012), who reported that high initial 
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Table 1. Mean values and standard deviation of growth rate (µ: divisions day-1), generation time (GT: d), maximum cell density (MCD: cells mL-1 x105) and days in 
exponential growth phase (EGP: days) for 16 microalgae strains isolated from Baja California, Mexico. Letters indicate significant differences by non-parametric 
ANOVA Kruskal Wallis, n = 3, α = 0.05, a>b>c>d>e>f>g>h>i.
Tabla 1. Valores promedio y desviación estándar de la tasa de crecimiento (µ: divisiones día-1), tiempo de generación (GT: días), densidad celular máxima (MCD: 
células mL-1 x105) y días en fase de crecimiento exponencial (TEP: días) de 16 cepas de microalgas aisladas de Baja California, México. Letras indican diferencias 
significativas por la prueba no paramétric ANOVA Kruskal Wallis, n = 3, α = 0.05, a>b>c>d>e>f>g>h>i.

Group Species µ GT MCD EGP

Chlorophytes Tetraselmis suecica 0.20 ± 0.01 gh 4.97 ± 0.35 b 46.79 ± 1.68 a 9.00

Xantophytes Heterococcus sp. 0.16 ± 0.01 h 6.19 ± 0.25 a 10.16 ± 0.19 cd 8.00

Bacillariophytes

Amphora sp. strain 1 0.28 ± 0.02 def 3.53 ± 0.25 def 6.62 ± 0.21 efgh 8.00

Amphora sp. strain 2 0.34 ± 0.01 bcd 2.88 ± 0.15 efg 6.59 ± 0.15 efgh 5.00

Amphora sp. strain 4 0.31 ± 0.01 cde 3.20 ± 0.05 def 5.94 ± 0.02 fghi 8.00

Amphora sp. strain 5 0.35 ± 0.04 bc 2.82 ± 0.40 fg 8.15 ± 0.27 def 9.00

Amphora sp. strain 6 0.21 ± 0.01 gh 4.71 ± 0.04 b 8.97 ± 0.06 cde 8.00

Amphora sp. strain 7 0.30 ± 0.01 cde 3.26 ± 0.12 def 4.87 ± 0.58 hi 8.00

Navicula sp. strain 2 0.29 ± 0.01 cdef 3.42 ± 0.14 def 46.37 ± 2.18 a 8.00

Navicula sp. strain 3 0.41 ± 0.04 b 2.45 ± 0.27 gh 8.02 ± 1.41 defg 7.00

Navicula sp. strain 4 0.22 ± 0.02 fg 4.38 ± 0.45 bc 11.45 ± 0.52 bc 10.00

Cymbella sp. strain 1 0.31 ± 0.01 cde 3.20 ± 0.11 def 14.07 ± 0.39 b 7.00

Cymbella sp. strain 2 0.27 ± 0.01 efg 3.76 ± 0.16 cd 3.65 ± 0.25 i 11.00

Nitzschia thermalis 0.29 ± 0.01 cdef 3.39 ± 0.03 def 44.49 ± 1.59 a 11.00

Diploneis sp. 0.52 ± 0.02 a 1.69 ± 0.38 h 3.65 ± 0.25 i 5.00

Rhabdonema sp. 0.28 ± 0.02 def 3.54 ± 0.33 de 5.27 ± 0.29 ghi 13.00

cell densities reduce light availability within bioreactors, limi-
ting cell division. For Navicula sp., the growth rate obtained in 
this work was 0.35 divisions day-1, which is similar to the 0.29 
divisions day-1 reported by Correa-Reyes et al. (2001) and 0.37 
divisions day-1 obtained by Khatoon et al. (2010). For Cymbella 
sp. strain 1, the growth rate was 0.31 divisions day-1, whereas 
for Cymbella sp. strain 2 was 0.27 divisions day-1. These results 
are consistent with the 0.35 divisions day-1reported by Kha-
toon et al. (2010). It is important to note that the irradiance 
used by Correa-Reyes et al. (2001) was 150 µmol m-2 s-1, whe-
reas the culture medium and temperature conditions were 
the same as those used in this study. In the study of Khatoon 
et al. (2010), cultures were maintained at 28 °C, using Conway 
medium, and an irradiance of 32 µmol m-2 s-1, which is similar 
to that used in this study.

Pigment content and photosynthetic activity
Chlorophyll a (Chl-a) was the most abundant pigment across 
all strains, with concentrations ranging from 2.42 ± 0.35 
µg mL-1 in Navicula sp. strain 4 to 0.18 ± 0.03 µg mL-1 in 
Navicula sp. strain 3. Chlorophyll b (Chl-b) was consistently 
lower, with the highest concentration found in Heterococcus 
sp. (0.52 ± 0.03 µg mL-1). The highest carotenoid content 
was recorded in Navicula sp. strain 4 (0.71 ± 0.00 µg mL-1), 
while the lowest values were observed in Tetraselmis suecica 
(0.04 ± 0.00), Amphora sp. strain 4 (0.05 ± 0.00), Cymbella 
sp. strain 1 (0.05 ± 0.04), and Nizschia thermalis (0.05 ± 0.01 
µg mL-1) (Table 2). Pigments found in diatom species stu-

died here are in consistent with those reported for diatoms 
(Sharma et al., 2023), whereas the pigments detected in T. 
suecica and Heterococcus sp. are similar to those reported in 
the literature for these microalgae species (Serive et al., 2017; 
Casian-González, 2020). 

ETR curves showed high variability among species, 
with values ranging from 3 to 25 µmol e- mg Chl-a-1 s-1. The 
light intensities used did not lead to photoinhibition (Figue 
2). Variations in ETR curves are related to differences in the 
photosynthetic apparatus, pigment content, and light adap-
tation of the analyzed microalgae strain. For example, the 
light-harvesting antenna of diatoms differs from green algae 
due to the presence of fucoxanthin-chlorophyll a/c protein 
complexes, and there is evidence that the organization and 
structure of the photosynthetic apparatus can vary among 
different diatom species. It is plausible that this heteroge-
neity in pigment composition and architecture of the pho-
tosynthetic machinery may lead to wide photosynthetic res-
ponses among different microalgae groups or even among 
species within the same group (Arshad et al., 2021).

Significant differences were observed among strains 
in Fv/Fm, photosynthetic efficiency (α), maximum electron 
transport rate (ETRm), and saturation irradiance (Ik) (p < 
0.05) (Table 3). Fv/Fm ranged from 0.74 ± 0.01 in Tetraselmis 
suecica to 0.47 ± 0.03 in Navicula sp. strain 3. Most strains 
exhibited photosynthetic efficiency values (α) between 1.0 
and 2.0 × 10-2, although Tetraselmis suecica, Rhabdonema sp., 
and Nizschia thermalis recorded higher values (7.0, 3.0, and 
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Figure 1. Mean values and standard deviation of cell density (cells mL-1 x106) for 16 microalgae strains isolated from Baja California, Mexico.
Figura 1. Valores promedio y desviación estándar de la densidad celular (células mL-1 x106) de 16 cepas de microalgas aisladas de Baja California, 
México.
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3.0 × 10-2, respectively). The highest ETRm was obtained in 
Amphora sp. strain 6 (44.34 ± 1.51 µmol e- mg Chl-a-1 s-1), fo-
llowed by Heterococcus sp. and Rhabdonema sp. (34.37 ± 1.24 
and 30.72 ± 4.27 µmol e- mg Chl-a-1 s-1, respectively). The 
lowest ETRm values (3–4 µmol e- mg Chl-a-1 s-1) were ob-
served in Amphora sp. strains 1, 2, and 7, and Navicula sp. 
strain 2. Regarding saturation irradiance (Ik), most strains 
had values between 400 and 1000 µmol photons m-2 s-1. 
Exceptions included Heterococcus sp. (2582.12 ± 5.77 µmol 
photons m-2 s-1), Amphora sp. strain 6 (2059.59 ± 249.21), 
and Navicula sp. strain 4 (1653.13 ± 321.15), which exhibited 
the highest Ik values. The lowest Ik values were recorded in 
Tetraselmis suecica (235.81 ± 24.59) and Navicula sp. strain 2 
(310.17 ± 162.08 µmol photons m-2 s-1) (Table 3).

In vivo chlorophyll a fluorescence is a rapid, non-invasive 
method to assess photosynthetic performance and physio-
logical status in algae. Light intensity, temperature, and 
nutrient levels affect the photosynthetic apparatus and, 
consequently, fluorescence (Malapascua et al., 2014; Gebara 
et al., 2023). To our knowledge, only one study (Mercado 
et al., 2004) has examined the photosynthetic activity of 
microalgae strains from the Baja California Peninsula. That 
study measured Ik values ranging from 12 to 43 µmol pho-
tons m-2 s-1 in benthic diatoms, consistent with values repor-
ted for other subtidal communities. Species such as T. suecica 
and N. thermalis showed high values of photosynthetic effi-
ciency (α) and lower values of Ik. This response is expected for 
low-light acclimatation cells, which adjust their physiology 

to optimize light-harvesting efficiency (Perkins et al., 2006). 
High values of α, ETRm, and Ik can be associated with efficient 
light utilization and the capacity of photoadaptation to high 
irradiances (Pérez-Varillas and Sánchez-Saavedra, 2025). This 
suggests that the diversity of photosynthetic strategies in the 
microalgae studied here is species-specific and can be linked 
to the environmental sites from which they were isolated. In 
the benthic diatom Navicula phyllepta, Ik values around 800 
µmol photons m-2 s-1 were obtained under light intensities of 
25 and 400 µmol photons m-2 s-1, and no photoinhibition was 
detected in the rapid light curves (Perkins et al., 2006). Similar 
Ik values were obtained in this study for Amphora sp. strains 2, 
4, 5, 6, and 7, Navicula sp. strains 3 and 4, Cymbella sp. strains 
1 and 2, and for Rhabdonema sp. ETRm values observed in 
Amphora sp. strain 6 and Rhabdonema sp. in this study were 
comparable to the 31.6 ± 1.1 µmol e – m-2 s-1 reported for 
Amphora coffeaeformis (Torres et al., 2013).

The Fv/Fm ratio, widely used to assess cellular health, ty-
pically ranges from 0.5 to 0.8 under non-stressful conditions; 
lower values suggest stress or cell death (Bobco, 2014). Tan 
et al. (2019) reported average Fv/Fm values by algal group: 
Chlorophyta (0.71) > Cryptophyta (0.62) > Bacillariophyta 
≈ Chrysophyta (0.60) > Xanthophyceae (0.54) > Pyrrophyta 
(0.51). Our Fv/Fm results for the chlorophyte T. suecica (0.74 
± 0.01) align with these values. Most strains studied here had 
Fv/Fm values between 0.50 and 0.72, suggesting that our 
culture conditions were generally non-stressful. Only Navicu-
la sp. strains 2 and 3 showed slightly lower values (0.49 and 

Table 2. Mean values and standard deviations of chlorophyll a, b, c, and carotenoids (Chl-a, Chl-b, Chl-c, and carotenoids, respectively; µg mL⁻¹) in 16 
microalgae strains isolated from Baja California, Mexico. Letters indicate significant differences based on non-parametric ANOVA (Kruskal-Wallis test), n = 3, α 
= 0.05; a > b > c > d > e > f > g > h > i > j.
Tabla 2. Valores promedio y desviación estándar del contenido de clorofila a, b, c y carotenoides (Chl-a, Chl-b, Chl-c y carotenes, respectivamente, en µg mL-1) 
de 16 cepas de microalgas aisladas de Baja California, México. Letras ins¿dican diferencias significativas por ANOVA no paramétrico Kruskal Wallis, n = 3, α = 
0.05, a>b>c>d>e>f>g>h>i>j.

Group Species Chl-a Chl-b Chl-c Carotenes

Chlorophytes Tetraselmis suecica 0.36 ± 0.01 fg 0.15 ± 0.01 b 0.02 ± 0.00 j 0.04 ± 0.00 e

Xantophytes Heterococcus sp.   0.73 ± 0.11 cd 0.52 ± 0.08 a 0.05 ± 0.02 hij 0.09 ± 0.02 cd

Bacillariophytes

Amphora sp. strain 1   1.14 ± 0.13 b 0.02 ± 0.01 c 0.12 ± 0.01 cdefg 0.21 ± 0.01 b

Amphora sp. strain 2   0.94 ± 0.09 bc 0.07 ± 0.05 c 0.11 ± 0.04 defgh 0.16 ± 0.02 bc

Amphora sp. strain 4 0.70 ± 0.11 cd 0.06 ± 0.01 c 0.16 ± 0.03 cde 0.05 ± 0.00 e

Amphora sp. strain 5   0.22 ± 0.10 g 0.06 ± 0.01 c 0.06 ± 0.03 ghij ND

Amphora sp. strain 6 0.43 ± 0.06 ef 0.03 ± 0.01 c 0.08 ± 0.01 fghij 0.05 ± 0.00 e

Amphora sp. strain 7   0.92 ± 0.06 bc 0.07 ± 0.01 c 0.26 ± 0.02 b 0.21 ± 0.07 b

Navicula sp.  strain 2   0.48 ± 0.06 def  ND 0.09 ± 0.01 efgh 0.16 ± 0.02 bc

Navicula sp.  strain 3   0.18 ± 0.03 g 0.03 ± 0.01 c 0.03 ± 0.00 ij ND

Navicula sp.  strain 4   2.42 ± 0.35 a ND 0.48 ± 0.05 a 0.71 ± 0.00 a

Cymbella sp. strain 1  0.35 ± 0.02 fg 0.02 ± 0.01 c 0.06 ± 0.01 ghij 0.05 ± 0.04 e

Cymbella sp. strain 2  0.64 ± 0.08 cde 0.02 ± 0.01 c 0.14 ± 0.01 cdef 0.16 ± 0.03 bc

Nitzschia thermalis 0.46 ± 0.09 def 0.02 ± 0.01 c 0.17 ± 0.02 cd 0.05 ± 0.01 e

Diploneis sp.    0.61 ± 0.05 de 0.04 ± 0.01 c 0.18 ± 0.02 c 0.11 ± 0.05 cd

Rhabdonema sp. 0.36 ± 0.06 fg 0.03 ± 0.02 c 0.09 ± 0.02 fghi 0.08 ± 0.03 cd
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Figure 2. Mean values and standard deviation of electron transport rate (ETR, µmol e- mg Chl-a s-1) versus Photosynthetic Active 
Radiation (PAR, µmol m-2 s-1) for 16 microalgae strains isolated from Baja California, Mexico.
Figura 2. Valores promedio y desviación estándar de al tasa de trasporte de electrones (ETR, µmol e- mg Chl-a s-1) contra la 
radiación fotosintéticamente activa (PAR, µmol m-2 s-1) de 16 cepas de microalgas aisladas de Baja California, México.
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0.47, respectively). Based on Fv/Fm and Ik values, the light 
intensity used in this study (50 µmol photons m-2 s-1) was not 
a limiting or stressful factor for most strains. However, some 
strains, such as T. suecica and Navicula sp. strain 2, did not 
reach high Ik values, indicating potential for adaptation to 
lower irradiance. In contrast, Heterococcus sp., Amphora sp. 
strain 6, and Navicula sp. strain 4 exhibited higher Ik values, 
consistent with adaptation to high-light environments, such 
as the shallow coastal waters of Ensenada, San Quintín, and 
Mulegé, where they were originally isolated (Bermúdez-Con-
treras et al., 2008; Perea-Moreno and Hernández-Escobedo, 
2016).

ETRm values varied among strains and were likely 
influenced by pigment composition, cell size, and environ-
mental origin. For example, Amphora sp. strain 6, a small 
benthic diatom (5.70 µm length, 3.68 µm width), showed 
the highest ETRm (44.34 ± 1.51 µmol e-1 mg Chl-a-1 s-1) and 
a moderate Chl-a content (0.43 ± 0.06 µg mL-1). In contrast, 
Amphora sp. strain 7, a larger-celled strain (13.83 µm length, 
3.99 µm width), had the lowest ETRm (4.13 ± 1.34), indicating 
that larger cells may be less efficient in light capture due 
to self-shading and greater pigment packaging (Yun et al., 
2010). An interesting exception was the xanthophyte Hetero-
coccus sp., which exhibited high photosynthetic activity and 
moderate pigment content despite being the largest strain 
(1903.13 µm in length, 13.44 µm in width). Heterococcus 
species are known for their morphological plasticity, capable 
of shifting between spherical, elongated, and irregular forms 
depending on their life cycle stage, even under controlled 

conditions (Darling et al., 1987). The results of growth and 
photosynthetic parameters suggest that the culture con-
ditions applied in this study did not impose stress on the 
microalgae strains analyzed. Therefore, these conditions can 
serve as a reference for laboratory cultivation of microalgae 
in aquaculture or biotechnology facilities.

CONCLUSION
This work provides a comprehensive physiological and pho-
tosynthetic characterization of 16 native microalgae strains 
isolated from coastal environments of the Baja California Pe-
ninsula, México. The results reveal marked interspecific varia-
bility in growth, pigment composition, and photosynthetic 
performance, supporting their potential for diverse biotech-
nological applications.

Among the analyzed strains, Tetraselmis suecica stood 
out for its high Fv/Fm value (0.74 ± 0.01), indicating excellent 
physiological status under the tested conditions, and its ele-
vated maximum cell density (46.79 × 10⁵ cells mL-1), reinfor-
cing its suitability for aquaculture and biomass production. 
Similarly, the benthic diatom Amphora sp. strain 6 exhibited 
the highest maximum electron transport rate (ETRm) at 
44.34 ± 1.51 µmol e- mg Chl-a-1 s-1 and one of the highest Ik 

values (2059.59 ± 249.21 µmol photons m-2 s-1), suggesting 
strong adaptation to high-irradiance environments. In con-
trast, strains such as Navicula sp. strain 3 exhibited both low 
Chl-a content (0.18 ± 0.03 µg mL-1) and low Fv/Fm (0.47 ± 
0.03), pointing to a reduced photosynthetic efficiency under 
the tested conditions.

Table 3. Mean values and standard deviation of maximmum quantum yield of photosystem II (Fv/Fm), photosynthetic efficiency (α (x10-2) µmol photon m-2 s-1), 
maximum electron transport rate (ETRm: µmol e- mg Chl-a s-1) and irradiance of saturation (Ik: µmol photon m-2 s-1) for 16 microalgae strains isolated from Baja 
California, Mexico. Letters indicate significant differences by non-parametric ANOVA Kruskal Wallis, n = 3, α = 0.05, a>b>c>d>e>f>g>h>i.
Tabla 3. Valores promedio y desviación estándar del rendimeinto cuántico máximo del fotosistema II (Fv/Fm), eficiencia fotosintética (α (x10-2) µmol photon 
m-2 s-1), tasa de transporte de electrones máxima (ETRm: µmol e- mg Chl-a s-1) e irradiancia de saturación (Ik: µmol photon m-2 s-1) de 16 cepas de microalgas 
aisladas de Baja California, México. Letras indican diferencias significativas por ANOVA no paramétrico Kruskal-Wallis, n = 3, α = 0.05, a>b>c>d>e>f>g>h>i.

Group Species Fv/Fm α (x10-2) ETRm Ik

Chlorophytes Tetraselmis suecica 0.74 ± 0.01 a 7.1 ± 0.30 a 17.31 ± 0.98 c 235.81 ± 24.59 h

Xantophytes Heterococcus sp. 0.67 ± 0.03 ab 1.00 ± 0.01 d 34.37 ± 1.24 b 2582.12 ± 5.77 a

Bacillariophytes

Amphora sp. strain 1 0.63 ± 0.01 bc 1.00 ± 0.01 d 3.83 ± 0.89 e 500.85 ± 5.25 efgh

Amphora sp. strain 2 0.61 ± 0.02 bcde 1.00 ± 0.01 d 3.34 ± 0.65 e 690.07 ± 157.17 def

Amphora sp. strain 4 0.60 ± 0.02 bcdef 1.00 ± 0.01 d 10.15 ± 2.71 d 910.21 ± 132.72 d

Amphora sp. strain 5 0.57 ± 0.03 cdefg 1.00 ± 0.01 d 9.63 ± 3.14 d 859.15 ± 131.30 d

Amphora sp. strain 6 0.60 ± 0.02 bcdef 2.00 ± 0.01 c 44.34 ± 1.51 a 2059.59 ± 249.21 b

Amphora sp. strain 7 0.55 ± 0.02 defgh 1.00 ± 0.01 d 4.13 ± 1.34 e 918.99 ± 196.46 d

Navicula sp. strain 2 0.49 ± 0.05 hi 1.00 ± 0.01 d 3.02 ± 0.66 e 310.17 ± 162.08 gh

Navicula sp. strain 3 0.47 ± 0.03 i 2.00 ± 0.01 c 13.86 ± 3.18 cd 788.83 ± 56.19 de

Navicula sp. strain 4 0.52 ± 0.02 ghi 1.00 ± 0.01 d 12.04 ± 0.52 d 1653.13 ± 321.15 c

Cymbella sp. strain 1 0.54 ± 0.02 fghi 2.00 ± 0.01 c 11.32 ± 2.00 d 648.30 ± 148.86 def

Cymbella sp. strain 2 0.54 ± 0.03 efghi 2.00 ± 0.01 c 13.19 ± 0.04 cd 640.79 ± 38.48 defg

Nitzschia thermalis 0.58 ± 0.01 cdefg 3.00 ± 0.01 b 11.02 ± 0.11 d 421.62 ± 19.47 fgh

Diploneis sp. 0.60 ± 0.01 bcdef 1.00 ± 0.01 d 3.93 ± 0.94 e 450.24 ± 95.06 fgh

Rhabdonema sp. 0.62 ± 0.03 bcd 3.00 ± 0.01 b 30.72 ± 4.27 b 967.70 ± 92.06 d
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The strain Heterococcus sp., despite its unusually large 
cell size, displayed notable photosynthetic capacity (ETRm: 
34.37 ± 1.24 µmol e- mg Chl-a-1 s-1) and high light saturation 
(Ik: 2582.12 ± 5.77 µmol photons m-2 s-1), highlighting its 
morphological plasticity and potential adaptability to fluc-
tuating environmental conditions.

Taken together, these findings not only broaden our 
understanding of the physiological diversity among native 
microalgae from this region, but also provide a valuable 
baseline for selecting strains with optimal traits for targeted 
uses in aquaculture, sustainable bioresource development, 
and industries such as pharmacology and cosmeceuticals. 
Future studies should evaluate these strains under stress 
conditions or in large-scale culture systems to confirm their 
robustness and commercial applicability.
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