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ABSTRACT
The fish processing industry faces dual challenges: environ-
mental impact and low-profit applications for by-products, 
emphasizing the need to valorize this waste. In this study, 
collagen was isolated from Seriola rivoliana fish scales. SDS-
PAGE results indicated that the purified collagen consisted 
of two distinct chains (α1- and α2-), consistent with the 
composition of type I collagen. Fish scale collagen is compo-
sed of Gly, Ala and Pro (20 %) amino acids, and exhibits an 
absorption peak at 230 nm in the UV-Vis spectrum. Collagen 
was hydrolyzed with 60 and 120 mU of Wobenzym (WE) acti-
vity and digestive gland extract from shrimp waste (SE). The 
resulting collagen-derived peptides from WE showed DPPH 
scavenging activity, while shrimp-derived peptides did not. 
Both WE and SE-derived peptides inhibited the growth of 
marine pathogens (Vibrio diabolicus, Vibrio parahaemolyticus, 
and Photobacterium) and human pathogens (Escherichia coli, 
Pseudomonas spp., and Salmonella spp.). However, SE-derived 
peptides demonstrated stronger inhibitory effects against 
human pathogens, while WE-derived peptides were more 
effective against marine pathogens. These results suggest 
that waste materials, such as scales from the marine fish S. 
rivoliana, have potential as a source of collagen for genera-
ting peptides with antioxidant and antimicrobial properties.
Keywords: Collagen, peptides, antioxidant, antimicrobial.

RESUMEN
La industria de procesamiento de pescado enfrenta un doble 
desafío: el impacto ambiental y el bajo valor de sus subpro-
ductos, lo que resalta la necesidad de su valorización. En este 
estudio, se aisló colágeno a partir de escamas de pescado de 
Seriola rivoliana. El análisis por SDS-PAGE mostró dos cadenas 
distintas (α1 y α2), consistentes con la composición del colá-
geno tipo I. Este colágeno está compuesto principalmente 
por los aminoácidos glicina, alanina y prolina, siendo Pro (20 
%) el más abundante, y presentó un pico de absorción a 230 
nm en el espectro UV-Vis. El colágeno fue hidrolizado con 60 
y 120 mU de actividad de Wobenzym (WE) y extracto de glán-
dula digestiva de camarón (SE). Los péptidos derivados con 
WE mostraron actividad secuestradora de radicales DPPH, 
mientras que los generados con SE no presentaron dicha 

actividad. Sin embargo, ambos tipos de péptidos inhibieron 
el crecimiento de patógenos marinos (Vibrio diabolicus, Vibrio 
parahaemolyticus y Photobacterium) y patógenos humanos 
(Escherichia coli, Pseudomonas spp. y Salmonella spp.), sin em-
bargo, su efecto fue de manera diferenciada. Estos resultados 
sugieren que las escamas de S. rivoliana, tienen potencial 
como fuente de colágeno para generar péptidos con propie-
dades antioxidantes y antimicrobianas.
Palabras clave: Colágeno, péptidos, antioxidante, antimicro-
biano.

INTRODUCTION
The fishing industry is responsible for producing significant 
quantities of marine and seafood products, where only 40 
% of the catch is destined for human consumption, while 
more than 60 % (head, skin, trimmings, fins, and viscera) 
is discarded. As a result, considerable amounts of waste 
are generated (Chalamaiah et al., 2012), leading to serious 
environmental problems since these wastes have no direct 
application. The dual problem arising from fish processing 
industries, including environmental issues and less profitable 
applications for by-products and waste, has highlighted the 
need to valorize fish processing waste, while simultaneously 
contributing to a more sustainable fishing industry.

In this context, research has focused on the search for 
higher-value products that could be extracted from these 
fishery by-products (head, skin, trimmings, fins and viscera), 
such as proteins (proteolytic enzymes, protein hydrolysates, 
bioactive peptides, collagen, and gelatin), fish oils, and 
hydroxyapatite (Montero and Gómez-Guillén, 2000). These 
biomolecules offer numerous applications possibilities, ran-
ging from the food industry to the pharmaceutical, medical, 
agricultural, and cosmetic industries (Ennaas et al., 2015; 
Ennaas et al., 2016).

Collagen Type I is a fibrillar protein composed by a helix 
structure consisting of two homologous chains (α1) and an 
additional sequence with slight change in its composition 
(α2) (Shimizu et al., 2001). It is the most abundant protein 
in mammals representing nearly 30% of total protein in the 
animal body. Humans consume external collagen, primarily 
from animal sources, to support joint health, improve skin 
elasticity, and promote overall tissue repair (Upasen et al., 
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2019), since natural collagen production decreases with age. 
Mammalian collagens, particularly those from pigs and cows, 
are the most used and popular, but they present challenges 
due to potential allergic reactions and the risk of transmitting 
diseases such as bovine spongiform encephalopathy (mad 
cow disease), ovine and caprine scrapie, and other zoonotic 
infections (Pati et al., 2012).

The major protein constituent of seafood processing 
waste is collagen, which resembles mammalian collagen 
(Upasen et al., 2019). Collagen from fish has been isolated 
from skin and scales from several species using acetic acid 
(Minh-Thuy et al., 2014; Upasen et al., 2019). It possesses 33 
% of glycine as the most abundant amino acid (Minh-Thuy et 
al., 2014; Huang et al., 2016) and an absorption at 230 nm by 
UV-Vis spectra (Zhang et al., 2011). Acetic acid extraction of 
collagen, also known as acid soluble collagen (ASC), displays 
a yield range of 0.69 - 6.20 % (Minh-Thuy et al., 2014; Chen 
et al., 2016). However, increasing yield of 1.06 – 9.5 % (Chen 
et al., 2016; Upasen et al., 2019) has been obtained by acetic 
acid extraction followed by an enzymatic hydrolysis with 
pepsin without affecting their physicochemical properties 
(Ali et al., 2018). Collagen yields depended on fish species, 
habitat, environment as well as the source of collagen (Minh-
Thuy et al., 2014). Fish collagen possesses similar characteris-
tics to porcine collagen, and thus, may be considered as an 
alternative to mammalian collagen (Pati et al., 2012).

Collagen and its hydrolysate (gelatin) protein contain, 
encrypted within their primary structure, a wide range of 
bioactive peptides which may be released by enzymatic 
hydrolysis (Ennaas et al., 2016). The hydrolysate gelatin pro-
ducts have been recognized as GRAS (Generally Recognized 
as Safe) by the US Food and Drug Administration (FDA) (Lukin 
et al., 2022). Bioactive peptides from fish collagen hydrolysis 
allowed the identification of an antibacterial peptide active 
against Listeria innocua HPB13 and Escherichia coli MC4100 
(Ennaas et al., 2015) and Staphylococcus aureus potentially 
through a carpet mechanism (Ennaas et al., 2016). Antioxi-
dant activity (Wang et al., 2013) and functional (solubility, 
foaming, and emulsifying ability) properties have been des-
cribed from peptide fractions obtained from by-products de-
rived from the collagen hydrolysate of a mixture of different 
fish species (Ennaas et al., 2016; Zamorano-Apodaca et al., 
2020). Thus, converting fish and seafood waste into valuable 
compounds with nutritional and functional properties offers 
a new alternative to mammal-based products. 

Therefore, the aim of this study was to isolate collagen 
from fish scales from a commercial fish species, Seriola rivo-
liana, a fast-growing species inhabiting subtropical oceans, 
which has emerged for aquaculture diversification around 
the world (Jerez, 2013). Collagen from scales was hydrolyzed 
with a commercial enzyme and with an extract from hepa-
topancreas from shrimp Litopenaeus vannamei, which is an 
important commercial species which accounts for 90 % of 
the global aquaculture shrimp production without hepato-
pancreas. The hepatopancreas, a waste from aquaculture, is 
a well-known source of enzymes, which actively hydrolyze 

protein, lipids and carbohydrates (Rojo-Arreola et al., 2019). 
The antimicrobial and antioxidant activity were evaluated for 
collagen and for the collagen derived peptides.

MATERIAL AND METHODS
Fish
Fish skin with scales from Seriola rivoliana was obtained from 
local fish markets in La Paz, Baja California Sur, México. The 
fish skins were transported to the Biochemistry Laboratory 
at Centro de Investigaciones Biologicas del Noroeste S.C. The 
scales were removed from the fish skin manually, washed 
with cold water to remove residues and salt, and then dried 
overnight at room temperature.

Preparation of scale collagen
Collagen from scales were isolated according to the 
methodology describe by Pati et al. (2012). Briefly, scales (~ 
60 g) from S. rivoliana were treated with 0.1 M NaOH to re-
move non-collagenous proteins and pigments for 72 h with 
constant agitation at 4 °C. Afterwards, scales were washed 
thoroughly with distilled water. Then, collagen was extracted 
with 0.5 M acetic acid for 72 h with constant agitation at 4 
°C, and the extract was centrifuged at 10, 000 rpm for 1 h 
at 4 °C in a Sorvall RC 6+ centrifuge (Thermo Scientific). The 
supernatant containing the soluble collagen was isolated by 
salting out by adding NaCl to a final concentration of 2.3 M. 
The addition of NaCl was performed with constant agitation 
for 1 h. The resulting solution was centrifuged at 10, 000 rpm 
for 1h at 4° C in a Sorvall RC 6+ centrifuge (Thermo Scientific). 
The supernatant was discarded and the pellet containing the 
precipitated collagen was re-solubilized in 0.5 M acetic acid. 
The solubilized collagen was dialyzed (molecular weight cut 
off range 12 - 14 kDa/ 45 mm / 6.4 mL/cm- Spectrum) against 
0.1 M acetic acid for 24 h with constant agitation at 4 °C. 
Then, a second dialysis was performed against distilled water 
for 24 h with constant agitation at 4 °C. Finally, the dialyzed 
collagen was recovered and freeze- dried for further analysis. 
These processes were carried out by triplicate. 

Amino acid analysis
Collagen samples were hydrolyzed under reduced pressu-
re in 6 M HCl at 110°C for 22 h, and the hydrolysates were 
analyzed by an amino acid analyzer HP1100 (Agilent, USA) 
(Gratzfeld-Huesgen, 1999).

UV-Vis Spectra
The UV-Vis absorption spectrum of collagen from S. rivoliana 
scales was recorded using a Synergy microplate reader (Agi-
lent Technologies) in the range of 200 – 400 nm (Zhang et al., 
2011). For this analysis, 1 mg of collagen was dissolved in 250 
µL of 0.1 M McIlvaine buffer (pH 6.0). McIlvaine buffer was 
used as blank. 

SDS-PAGE
Isolated collagen from S. rivoliana fish scales was analyzed by 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis 
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(SDS-PAGE) according to Laemmli (1970). Thirty micrograms 
of protein were mixed with 4x sample buffer (5 M Tris–HCl 
pH 6.8, 20 % glycerol, 10 % SDS, 10 % β-mercaptoethanol 
and 0.05 % bromophenol blue). Samples were boiled for 10 
min and then loaded into a 10 % (collagen) or 15 % (collagen 
derived peptides) polyacrylamide gel. Broad range molecu-
lar weight standard (Bio-Rad, 1610317, California, USA) was 
loaded into the gel. Electrophoresis was done on a constant 
current of 15 mA per gel at 4 °C, using a vertical electropho-
resis unit (Hoefer, Inc Hoefer SE600). After electrophoresis, 
the gels were stained for 2 h with staining solution (0.05 % 
(w/v) Coomassie Brilliant Blue R-250, 7 % (v/v) acetic acid, 40 
% (v/v) methanol). Proteins were revealed by soaking for 2 
h in destaining solution (7 % (v/v) acetic acid and 40 % (v/v) 
methanol). Gel proteins were analyzed using a gel imager 
(Chemi Doc XRS, Bio-Rad, California, USA).

Protein quantification
The protein concentration in the supernatant solutions 
was assayed by the Bradford method (Bradford, 1976) and 
compared with a standard, bovine serum albumin (Sigma, 
B-4287, St. Louis, MO).

Hydrolysis of the collagen peptides
To generate collagen peptides two different sources of enzy-
mes were used, Wobenzym (WE) (Rivera-Pérez et al., 2023), a 
commercial mixture of commercial enzymes of mixed origin, 
animal and plant (Table S1), and a shrimp enzyme extract 
(SE). To standardize the units of activity for the hydrolysis ex-
periment using each set of enzymes, total proteolytic activity 
was measured using 0.5 % azocasein as substrate in 0.1 mM 
McIlvaine buffer, pH 6.0 at 25 °C. The mixture was incubated 
for 10 min, following the methodology described by García-
Carreño et al. (1993). Total proteinase can be expressed as the 
change in absorbance per minute per milligram of protein 
of the enzyme extract used in the assays or as international 
units IU of µmol of substrate cleaved per minute, based on 
the substrate extinction coefficient.

Collagen hydrolysis was performed with WE and SE, res-
pectively. Reaction mixture contained 1 mg (dried weight), 
0.1 M McIlvaine buffer pH 6.0, and enzyme (WE or SE) con-
taining 60 or 120 mU. The mixture was incubated at 37 °C 
with constant agitation (300 rpm) for 1 h. The enzymes were 

inactivated at 95 °C for 15 min and stored at - 20 °C for further 
analysis. Controls without enzymes and with both enzyme 
mixtures were included. 

Antioxidant activity
Antioxidant activity was measured by scavenging activity 
against free radicals using 2,2-diphenyl1-picrylhydrazyle 
(DPPH) radicals (Prieto, 2012). The DPPH assay was perfor-
med by mixing 180 µL of the DPPH solution and 20 µL of the 
sample. The mixture was incubated for 30 min in the dark at 
room temperature, and absorbance was measured at 515 nm 
using a spectrophotometer (VERSAmax microplate reader, 
Molecular Devices). All the experiments were performed in 
triplicate, and the scavenging activity (%) was calculated as 
100 % x (Ai-Aj)/Ac, where Ai is the absorbance of the samples 
+ DPPH, Aj is the absorbance of the sample + DPPH solvent, 
and Ac is the absorbance of the DPPH solvent + DPPH. 

Bacterial strains
Two bacterial strains CIBGEN-002 and CIBGEN-003 were used 
in this study, which were previously isolated from the sedi-
ment of shrimp ponds with acute hepatopancreatic necrosis 
disease (AHPND) and identified by whole-genome as Vibrio 
diabolicus and Vibrio parahaemolyticus respectively. Bacterial 
numbers were estimated in colony-forming units (CFU) at 108 
CFU per mL in V. diabolicus and 107 CFU per mL in V. para-
haemolyticus after serial dilution in 2.5 % NaCl and plating on 
TSA. Human pathogens were isolated from the wastewater 
treatment plant in La Paz by the Microbiology Lab from CIB-
NOR, and used in this study (Table 1)

Antimicrobial activity
Antimicrobial activities of collagen peptides derived from 
scales of S. rivoliana were assessed by spectrophotometry, 
measuring their effect on bacterial growth (Table 1). Briefly, 
50 μL of culture at 0.1 OD and 25 μL of the sample (100 μg 
protein of collagen peptides) were added to 165 µL of Trypto-
Casein Soy Broth (TSB) supplemented with 2.5 % NaCl. The 
effect on the bacterial growth was monitored every 30 min 
preceded by agitation for 24 h at 35 °C in a 96-well microplate 
reader (Multiskan GO). Positive (bacteria alone) and negative 
(media alone) controls were included.

Table 1. Strains used for this study.
Tabla 1. Cepas utilizadas en este estudio.

Strain Growth 
media Reference/ATCC

Vibrio diabolicus 
(CIBGEN 002) TSB Veyrand-Quiros et al., 2020

Vibrio parahaemolyticus 
(CIBGEN 003) TSB Veyrand-Quiros et al., 2020

Photobacterium spp. TSB Veyrand-Quiros et al., 2020

Escherichia coli LB 25922

Pseudomonas spp. LB 15442

Salmonella spp. LB 35664

Table S1. Wobenzym mixture of enzymes composition with origin and dried 
mass.
Tabla S1. Composición enzimática de la mezcla Wobenzym con su origen 
y masa seca.

Origin Enzyme Enzyme Mass (mg)

Sus scorfa (pancreas) Pancreatin 300

Carica papaya Papain 180

Ananas comosus Bromelain 135

Sus scorfa Trypsin 72

Bos taurus Chymotrypsin 3

Sophora japonica Rutoside trihydrate 150
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Statistical analysis
The effects of collagen-derived peptides on bacterial growth 
were analyzed for significance using a one-way ANOVA. The 
Shapiro-Wilk test was used to assess normality, and a Tukey 
post-hoc test identified differences among means at a signifi-
cance level of P > 0.05. All statistical analyses were conducted 
using the R software.

Ethical Statement 
The authors followed all applicable international, national, 
and institutional guidelines for the care and use of fish.

RESULTS AND DISCUSSION
Collagen yield and protein concentration 
Collagen was extracted from scales of Seriola rivoliana using 
three independent batches. The mean soluble protein con-
centration after the collagen isolation process was 0.040 ± 
0.014 mg/mL. Although this concentration and the final co-
llagen yield, calculated as 0.083 % ± 0.06 based on the initial 
mass of the scales and the final dry mass of collagen extract 
appear low, comparable studies indicate variable yields 
across fish species and extraction methods. For example, aci-
dic extraction has been reported to produce yields ranging 
from as low as 0.05 % in Thunnus obesus (Ahmed et al., 2019), 
0.73 % in Chanos chanos (Wahyu and Widjanarko, 2018) to 1.0 
% in Scarus sordidus (Jaziri et al., 2023) among marine species. 
Furthermore, modifications in the extraction conditions, par-
ticularly pH and temperature, can significantly enhance reco-
very. Under optimized conditions, yields have reached 27.5 % 
from fish scales of Larimichthys crocea (Feng et al., 2020), and 
up to 39 % from scales of the freshwater species Oreochromis 

aureus (Hernández-Ruiz et al., 2023). These values contrast 
with higher efficiencies obtained through alternative ex-
traction techniques. For example, pepsin-soluble collagen 
extraction in Sciaenops ocellatus yielded 4.42 % (Chen et al., 
2016), while ethanol-hexane extraction in Oreochromis spp. 
achieve around 49.42% (Huang et al., 2016). The comparative 
lower yield observed in acetic-soluble extraction method 
from scales may be attributed to a higher degree of molecular 
cross-linking among collagen molecules in scales compared 
to skin (Feng et al., 2020), which can yield over 50 % (Huang et 
al., 2016). Additionally, collagen yield is influenced by factors 
such as fish species, habitat, environmental conditions, and 
the specific collagen source (Minh-Thuy et al., 2014).

Sub-unit composition and UV-Vis Spectra
The SDS-PAGE analysis of collagen from scales (Fig. 1A) 
displays the protein profile of a type I collagen (lane 1), com-
prised by distinct bands that typically represent the α1- and 
α2-chains (~120 kDa) with the cross-linked dimers (β-chain, ~ 
240 kDa) and small amounts of trimers (γ -chains). This elec-
trophoretic pattern was similar to the reported for bovine 
tendon (Chen et al., 2016) and those for marine scales from 
Thunnus obsesus (Ahmed et al., 2019) and Miichthys miiuy (Li 
et al., 2018). The UV absorption spectra of collagen extracted 
from fish scales is shown in Fig. 1B. The spectra were recor-
ded over a wavelength range of 200 to 400 nm for three 
independent batches, labeled B1, B2, and B3, represented 
by dashed, dotted, and solid red lines, respectively. All three 
samples show a prominent absorption peak around 220 - 
230 nm, which is typical for collagen and corresponds to the 
C=O, −COOH, and CONH2 groups in the collagen polypepti-

Figure 1. Collagen (30 µg) from Seriola rivoliana fish scales. A) SDS-PAGE gel electrophoresis (10 %) of extracted collagen. Lane 1, the extracted collagen; Lane 
2, high molecular weight marker (Precision Plus Protein Dual Color Standards – BIO-RAD). Arrows indicate chains of collagen type I. The image is representative 
of three independent batches. Gel was stained with Coomassie Brilliant Blue R250. B) UV absorption spectra of collagen extracted from scales from S. rivoliana. 
Absorbance is expressed in arbitrary units (a.u.). B1-3: independent batches.
Figura 1. Colágeno (30 µg) de escamas de pescado de Seriola rivoliana. A) Electroforesis en gel SDS-PAGE (10 %) del colágeno extraído. Carril 1, colágeno 
extraído; Carril 2, marcador de peso molecular alto (Precision Plus Protein Dual Color Standards – BIO-RAD). Las flechas indican las cadenas del colágeno tipo 
I. La imagen es representativa de tres lotes independientes. El gel fue teñido con Azul Brillante de Coomassie R250. B) Espectros de absorción UV del colágeno 
extraído de escamas de S. rivoliana. La absorbancia está en unidades arbitrarias (a.u.). B1-3: lotes independientes.
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des chains (Yan et al., 2008; Hernández-Ruiz et al., 2023). The 
peak absorbance values differ slightly among the batches: 
B1 reaches a maximum of 2.755, B2 has a peak of 0.989, and 
B3 peaks at 2.496. These variations suggest differences in the 
purity across the batches. After 250 nm, the absorbance ra-
pidly decreases, remaining relatively low and stable from 300 
nm onward, with no significant peaks or features. This profile 
confirms the presence of collagen, as proteins generally do 
not absorb strongly beyond 300 nm, which indicates mini-
mal contamination with other UV-absorbing compounds. 
Similar results have been described in fish skin (Atef et al., 
2021) and scales (Hernández-Ruiz et al., 2023) from marine 
and freshwater species. 

Amino acid composition
Fish collagen has been recognized for its diverse amino acid 
composition (Chinh et al., 2019). The percentages of amino 
acids in S. rivoliana were obtained after acidic hydrolysis of 
the protein for 24 h and compared to results from other fish 
scale collagens (Table 2). Proline (Pro) content was higher in 
S. rivoliana (20.61 %) than in Pagrus major (red sea bream) 
(10.19 %), Cololabis saira (Pacific saury) (9.1 %), and porcine 
collagen (12.5 %). It is well known that proline content in 
collagen significantly influences its structural and functional 
properties (Shoulders and Raines, 2009), providing advan-
tages in terms of structural stability and thermal resistance. 
Proline contributes to the stabilization of the collagen triple 
helix through its rigid cyclic structure, which restricts con-
formational flexibility of the polypeptide chain. This rigidity 
enhances intermolecular hydrogen bonding and hydropho-

bic interactions, resulting in improved structural stability. In 
addition, the high proline content increases the denaturation 
temperature of collagen, thereby conferring greater thermal 
resistance (Shoulders et al., 2009). Also, peptides containing 
Pro and Hyp, exhibit bioactivity since are more resistant to 
the action of peptidases in the digestive system (Ucak et al., 
2021). These characteristics make it particularly beneficial for 
biomedical and cosmetic applications.

Hydrolysis of the collagen peptides
Collagen hydrolysates were produced with two different 
sources of enzymes, a commercial mixture of enzymes (Wo-
benzym; WE) and an enzymatic extract from the digestive 
gland (shrimp enzyme; SE) of the white-leg shrimp Litope-
naeus vannamei. The hydrolysis conditions were standardi-
zed before collagen hydrolysis (pH and time of hydrolysis). 
Collagen from scales was hydrolyzed with two different units 
of activities, 60 and 120 mU of WE and SE, respectively using 
0.1 M MclIvaine buffer pH 6.0 at 37 °C during 1 h (Fig. 2). The 
hydrolysis patterns show differences between the untreated 
collagen (Fig. 2A) and the hydrolyzed samples (Fig. 2B). 
The hydrolyzed samples show additional lower-molecular-
weight bands, indicating collagen breakdown products. As 
the enzyme activity increases from 60 to 120 mU, the extent 
of hydrolysis becomes more pronounced, with clearer frag-
mentation and additional lower-molecular-weight bands. 
WE, which contains serine- and cysteine-type proteases, 
and SE, which includes a broader range of proteases (serine, 
cysteine, aspartic, and metalloproteases), may generate a 
distinct banding pattern due to differences in cleavage spe-
cificity and efficiency in collagen hydrolysis.

Table 2. Amino acid composition (%) of fish scale collagens from marine species compared to porcine collagen.
Tabla 2. Composición de aminoácidos (%) de colágeno de escamas de pescado de especies marinas comparadas con colágeno 
porcino.

Amino acid Seriola rivoliana
(this study) Pagrus major* Cololabis saira* Porcine collagen*

Glu 6.03 7.97 7.08 7.5

Asp 9.67 5.3 6.14 4.82

Ser 3.20 3.79 5.18 2.62

His 0.00 1.07 1.31 0.88

Gly 24.13 35.31 33.54 36.7

Thr 2.90 2.71 3.02 0.66

Ala 12.20 13.65 11.59 12.13

Arg 7.92 5.14 4.81 5.05

Tyr 0.69 0.59 1.14 0.53

Val 2.31 2.74 3.43 3.33

Phe 3.73 1.6 1.77 1.5

Ile 1.42 1.2 1.62 1.29

Leu 2.40 2.32 2.99 2.58

Lys 2.78 3.35 3.34 2.92

Pro 20.61 10.19 9.1 12.5

*Mori et al., 2013
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Other studies have demonstrated a higher degree 
of collagen hydrolysis when using enzyme mixtures (e.g. 
Flavourzyme, Protamex, etc) which release low-molecular-
weight products (<37 kDa) (Atef et al., 2021; Hernández-Ruiz 
et al., 2023; Xu et al., 2024). However, the most used enzymes 
for collagen hydrolysis are pepsin and papain, which typi-
cally produce hydrolyzed proteins below 75 kDa (Gonzalez-
Serrano et al., 2022). In this study, we compared a commercial 
enzyme mixture, which was previously proved to generate 
bioactive peptides in abalone viscera (Rivera-Perez et al., 
2023), with an enzyme extract derived from shrimp fishery 

waste, which is known to contain stable trypsin and chy-
motrypsin activities (Rojo-Arreola et al., 2019). Both enzyme 
sources were effective in hydrolyzing S. rivoliana collagen, 
generating peptides smaller than 30 kDa. This suggests that 
shrimp enzymes derived from the digestive gland could be 
effectively used for collagen hydrolysis. 

Antioxidant activity
The antioxidant activity of collagen and collagen peptides 
are shown in Fig. 3. The results show that ascorbic acid (po-
sitive control) exhibits the highest antioxidant activity (89 % 
± 1.0). Isolated collagen shows a lower antioxidant activity 
(47.94 % ± 34.7) compared to the positive control. For the 
enzyme-treated samples, WE hydrolysis significantly enhan-
ced the antioxidant activity of collagen in a dose-dependent 
manner. The samples hydrolyzed with 120 mU of WE exhibit 
higher antioxidant activity (83.24 % ± 8.38) than those 
hydrolyzed with 60 mU (50.79 % ±14.07), while SE-derived 
peptides showed no activity. Comparable effects of enzyma-
tic hydrolysis have been reported in other fish species: silver 
carp scales treated with alcalase and flavourzyme reached 
93.4 % antioxidant activity (Xu et al., 2024), whereas lower 
activities were observed for redlip croaker scales hydrolyzed 
with neutrase (30.97 %; Wang et al., 2020) and miiuy croaker 
scales digested with trypsin (~ 50 %; Li et al., 2018). These 
differences suggest that both the enzyme type and hydro-
lysis conditions strongly influence antioxidant potential. The 
higher activity observed for WE hydrolysates may be explai-
ned by the exposure of amino acids such as glycine, glutamic 
acid, alanine, and aspartic acid, which promote free radical 
stabilization (Zamorano-Apodaca et al., 2020). Furthermore, 
enzymatic reactions coupled with physical aggregation likely 
facilitated the formation of larger yet more concentrated 
peptide aggregates, increasing the exposure of hydrophobic 
groups and thereby enhancing antioxidant capacity (Xu et 
al., 2024). 

Figure 2. Hydrolysis of collagen from fish scales. A) Collagen untreated, B) 
Collagen hydrolyzed (30 µg) with Wobenzym (WE) and shrimp enzymes 
(SE), using 60 or 120 mU of activity. SDS-PAGE 15 % for gel A, and 12 % for 
gel B. Arrows indicate collagen chains from fish scales. 
Figura 2. Hidrólisis del colágeno de escamas de pescado. A) Colágeno sin 
tratar, B) Colágeno hidrolizado (30 µg) con Wobenzym (WE) y enzimas de 
camarón (SE), utilizando 60 o 120 mU de actividad. SDS-PAGE al 15 % en 
gel A y 12 % en gel B. Las flechas indican las cadenas de colágeno de las 
escamas de pescado. 

Figure 3. Percentage of DPPH scavenged by isolated collagen, hydrolyzed collagen and ascorbic acid (positive control) 
from all biological replicates (B1, B2, B3) in each hydrolysis condition (using WE and SE at 60 and 120 mU of activity). 
HC: hydrolyzed collagen, WE: Wobenzym, SE: Shrimp enzyme. 
Figura 3. Porcentaje de DPPH neutralizado por colágeno aislado, colágeno hidrolizado y ácido ascórbico (control 
positivo) a partir de todas las réplicas biológicas (B1, B2, B3) en cada una de las condiciones de hidrólisis (utilizando WE 
y SE a 60 y 120 mU de actividad). HC: colágeno hidrolizado, WE: Wobenzym, SE: enzima de camarón.
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Antimicrobial activity
Fish scale collagen (control) established baseline growth ra-
tes for the tested pathogens (Fig. 4A–F), with values ranging 
between 0.30 – 0.75 h-1 depending on the species (e.g., E. coli 
µ = 0.30, Pseudomonas spp. µ = 0.75, Table 3). When collagen 
was hydrolyzed with Wobenzym, the resulting peptides 
generally reduced bacterial growth compared to the control. 
In particular, WE_120 consistently lowered growth rates in 
marine pathogens, reaching µ = 0.46 h-1 in V. diabolicus and 
µ = 0.50 h-1 in Photobacterium, which were markedly lower 
than the corresponding controls. However, in Pseudomonas 
spp. WE treatments strongly enhanced growth, with µ values 
rising to 1.10 h-1 under WE_120, suggesting a species-specific 
utilization of WE-derived peptides.

Treatments with shrimp enzyme extracts (SE) elicited 
more variable responses across species (Fig. 4). For V. dia-
bolicus and Photobacterium, SE_120 reduced growth (µ ≈ 
0.48–0.62 h-1), supporting an inhibitory effect. In contrast, in 
enteric bacteria such as E. coli, SE_120 markedly increased 

growth (µ = 0.48 h-1 vs. 0.30 in collagen), while in Salmonella 
the effect was neutral to slightly stimulatory. These differen-
ces suggest that shrimp-derived peptides may act as inhi-
bitory compounds for some marine pathogens but provide 
accessible nutrients for enteric species.

Overall, the results indicate that enzyme source and 
hydrolysis duration are critical determinants of antimicrobial 
activity. Wobenzym-derived peptides (especially at 120 mU) 
showed more consistent inhibitory effects across vibrios and 
Photobacterium, while shrimp enzyme-derived peptides 
displayed species-specific outcomes: inhibitory against 
some marine bacteria, but occasionally stimulatory in ente-
ric pathogens such as E. coli and Salmonella. This variability 
likely reflects differences in the peptide profiles generated 
by the distinct protease systems, with certain hydrolysates 
producing bioactive antimicrobial peptides, while others 
yield substrates that support bacterial growth.

This study further indicate that peptides generated 
from WE and SE exhibit distinct antibacterial activities, likely 

Table 3. Microbial growth responses (µ, h-1) of representative strains after exposure to collagen hydrolysates.
Tabla 3. Respuestas de crecimiento microbiano (µ, h-1) de cepas representativas tras la exposición a 
hidrolizados de colágeno.

Strain Collagen WE_60 WE_120 SE_60 SE_120 Ctrl

V. diabolicus 0.590 0.569 0.537 0.505 0.483 0.537

V. parahaemolyticus 0.590 0.569 0.537 0.611 0.642 0.652

Photobacterium 0.611 0.537 0.505 0.590 0.621 0.642

E. coli 0.295 0.328 0.339 0.317 0.483 0.404

Pseudomonas spp. 0.747 0.948 1.097 0.898 0.948 0.747

Salmonella spp. 0.490 0.646 0.697 0.594 0.646 0.542

Figure 4. Antimicrobial activity of fish scale collagen, hydrolyzed collagen treated with Wobenzyme, and hydrolyzed collagen treated with 
shrimp enzyme against six selected bacterial strains, monitored by growth curves at 600 nm. A) Vibrio diabolicus, B) Vibrio parahaemolyticus, C) 
Photobacterium, D) Escherichia coli, E) Pseudomonas spp., F) Salmonella spp. 
Figura 4. Actividad antimicrobiana del colágeno de escamas de pescado, colágeno hidrolizado tratado con Wobenzym y colágeno hidrolizado 
tratado con enzima de camarón frente a seis cepas bacterianas seleccionadas, monitoreada mediante curvas de crecimiento a 600 nm. A) Vibrio 
diabolicus, B) Vibrio parahaemolyticus, C) Photobacterium, D) Escherichia coli, E) Pseudomonas spp., F) Salmonella spp.
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influenced by differences in peptide size and composition, 
which in turn may modulate their functional properties (Poor-
na et al., 2012). Hydrolyzed peptides from the skin and scales 
of various fish species have demonstrated effectiveness aga-
inst several bacterial strains, including Aeromonas hydrophila 
(Ulzanah et al., 2023), E. coli, Listeria innocua, and Salmonella 
(Atef et al., 2021; Ennaas et al., 2015) and Flavobacterium 
psychrophilum and Renibacterium salmoninarum (Wald et al., 
2016). However, the antibacterial potency can vary based on 
the hydrolysis method and the specific peptides produced, 
as observed in studies using different enzymes to hydrolyze 
collagen from fish skin (Atef et al., 2021).

The findings of this study highlight the potential of 
collagen and its hydrolysates from Seriola rivoliana scales as 
promising sources of bioactive peptides with antioxidant and 
antimicrobial properties. Future research should focus on the 
purification and characterization of specific peptide fractions 
to identify the sequences responsible for these activities 
and to elucidate their underlying mechanisms of action. In 
addition, in vivo studies and bioavailability assessments are 
needed to confirm the functional effects observed in vitro. 
From an applied perspective, scaling up the extraction and 
hydrolysis processes, while optimizing cost-effectiveness and 
sustainability, could enable the development of collagen-de-
rived ingredients for biomedical, nutraceutical, and cosmetic 
applications. Finally, exploring the use of other enzymatic 
systems or combined hydrolysis strategies may further en-
hance the bioactivity of collagen peptides, broadening their 
potential for industrial and therapeutic utilization.

CONCLUSIONS
Type I collagen was successfully extracted from the scales of 
Seriola rivoliana with a yield of 0.083 % ± 0.06 and a soluble 
protein concentration of 0.040 ± 0.014 mg/mL. Hydrolysis 
with Wobenzym (WE) significantly enhanced antioxidant 
activity in a dose-dependent manner, reaching 83.24 % ± 
8.38 at 120 mU, a value close to the positive control (ascorbic 
acid, 89 % ± 1.0), while shrimp enzyme (SE)-derived peptides 
showed negligible antioxidant effects. Antimicrobial assays 
demonstrated that WE-derived peptides reduced growth 
rates of marine pathogens such as Vibrio diabolicus (µ = 0.46 
h-1 vs. 0.75 h-1 in controls), whereas SE-derived peptides were 
more effective against human enteric pathogens, reducing 
E. coli growth to µ = 0.48 h-1 compared to 0.30 h-1 in controls.

This study introduces an innovative approach by com-
paring a commercial enzyme mixture with an enzymatic 
extract obtained from shrimp fishery waste, a low-cost and 
sustainable resource. The use of SE represents a novel valo-
rization strategy for fishery by-products, offering an alterna-
tive source of bioactive peptides with targeted antimicrobial 
activity. These findings highlight the potential of collagen 
hydrolysates from S. rivoliana scales for application in the 
fish-processing industry, where they could be developed 
into natural antioxidant and antimicrobial agents for food 
preservation, nutraceuticals, and biomedical formulations.
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