PHYTOCHEMICAL PROFILE AND EVALUATION OF PHOTOPROTECTIVE POTENTIAL OF Syringodium filiforme KÜTZING

Kethia L. González García1*, Maria Rodríguez1, Ángel Concepción2, Odalys Valdés3, Joaquín G. Marrero4, Mariana Macías-Alonso4, Olga Valdés-Iglesias1, Yasnay Hernández Rivera1, Adrián Fagundo1, Idania Rodeiro1 and Richard Gutiérrez Cuesta1

1 Chemistry Department. Center of Marine Bioproducts (CEBIMAR), Loma & 37. Vedado, Havana, Cuba. PC. 10600.
2 Medical Science Institute "Victoria de Girón", Havanna, Cuba.
3 Center of Investigation and Development of Medicaments, Havanna, Cuba.

ABSTRACT

Syringodium filiforme Kützing (Cymodoceaceae) is a marine seagrass abundant in Caribbean Sea, rich in phenolic compounds which have antioxidant properties and can provide new opportunities for treatment and prevention of diseases mediated by ultraviolet radiation like photoaging and skin cancer. The aim of this study was to evaluate the phytochemical profile and the photoprotective potential of S. filiforme leaf extracts. Total phenolic and flavonoid contents were 72.85 ± 0.72 mg pyrogallol equivalents/g dry extract (PE) and 59.09 ± 0.45 mg quercetin equivalents/g dry extract (QE), respectively. The total anthocyanins content was 1.35 ± 0.02 mg malvidin-3-O-glucoside equivalents/g dry extract (ME). The extract showed photoprotector potential in the UVB region. The S. filiforme treated mice showed a significantly decreased wrinkling score, and a reorganization of the collagen fiber was observed compared with irradiated and not treated skin. These results suggest that the crude extract of S. filiforme leaves may be a promising natural sunscreen product.

Keywords: Syringodium filiforme Kützing, ultraviolet, photoprotective, chronic skin damage.

INTRODUCTION

Solar ultraviolet (UV) exposure is one of the most important environmental factors affecting skin physiology. Various skin disorders, such as wrinkling, scaling, dryness and pigment abnormalities can be initiated by exposure to solar UV radiation, which has been reported by various clinical, epidemiological and biological studies to be the major etiological agent in the development of skin cancers (Lo & Fisher, 2014; Bowden, 2004).

Skin contains antioxidant defenses, but these will be overwhelmed if the dose of UV light is high enough, and this results in free radical damage to cellular components. Most dermatologists agree that antioxidants help fight free radical damage and can help maintain healthy skin. They do so by affecting intracellular signaling pathways involved in skin damage and protecting against photodamage, as well as preventing wrinkles and inflammation (Oresajo et al., 2012).

In recent years there have been an increment in studies for applications of marine bioactive compounds. At present it is known that various commercial nutritional supplements prepared from extracts of seaweeds are of great importance for the health care and protection against age-related diseases (Pallela et al., 2010; Zhao & Chen, 2014).

Recently, marine originated photoprotective or anti-photoaging behavior was observed in the methanol extracts of S. filiforme leaves, and this effect is attributed to the presence of phenolic compounds, which have antioxidant properties. Phenolic compounds are known for their photoprotective potential and have been widely used in various cosmetic products. The purpose of this study was to evaluate the photoprotective potential of S. filiforme leaf extracts.
of Corallina pilulifera. These extracts were found to exert potent antioxidant activity and protective effect on UVA-induced oxidative stress in human dermal fibroblast cells, by protecting DNA and also by inhibiting matrix metalloproteinases (MMPs) (Ryu et al., 2009). In recent studies Fucoxanthin, a characteristic carotenoid present in edible brown seaweeds, showed great antioxidant activity, anti-cancer, anti-diabetic and anti-photoaging properties (D’Orazio et al., 2012). From an ethyl acetate fraction of Zostera marina L., luteolin was isolated, which possesses anti-skin photoaging effect through inhibition of MMP-1 (Kim et al., 2004). Aaptamine, an alkaloid isolated from the sponge Aaptos suberitoides, has been reported to attenuate the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1β, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes (Kim et al., 2014). In a previous work, our research group reported that the topical application of thalassiolin B, a sulphated flavone glycoside isolated from Thalassia testudinum, shown skin-regenerating effects (Regalado et al., 2009).

As it is evident that unregulated expression of MMPs leads to photoaging, many research groups are emphasizing their research goals to check the ability of marine-derived phlorotannins as potential anti-photoaging agents (Wijesinghe and Jeon, 2011).

Syringodium filiforme Kützing (Cymodoceaceae), a marine seagrass abundant in the Caribbean Sea, is a matter of great importance to the cosmetic and food industries. From the methanolic and aqueous extracts of this species Grignon-Dubois and coworkers (Nuisier et al., 2010) isolated chicoric and caftaric acids as major polyphenols. Recently, González-García and coworkers (2011) found in the methanol extract of S. filiforme, the presence of flavonoids, phenols and anthocyanins. The ability of S. filiforme Kützing to absorb UVB rays was determined by UV/visible light spectrophotometry (González-García et al., 2011). S. filiforme showed a high absorptivity in the range of UVB light (280–320 nm), with peak positions at 278 and 312 nm. In this context, S. filiforme could represent a novel and effective strategy for treatment and prevention of photoaging.

Considering the lack of studies on the photoprotective properties of the extract of S. filiforme leaves, the aim of this study was to evaluate its photoprotective potential. To the knowledge of the authors this is the first study showing prevention of UV-mediated damages in skin by S. filiforme.

MATERIALS AND METHODS

Plant materials

S. filiforme leaves were collected from Guanabo Beach (23°10’44”N - 82°07’01”W) Havana, Cuba, in March 2012. A voucher specimen was authenticated by Dr. A. J. Areces, Institute of Oceanology, Havana, Cuba. The voucher was deposited in the collection of the National Aquarium from Cuba, with number IDO 165. The collected seagrass was washed with distilled water to remove sand and salts and then dried in an oven at 50 °C to constant weight.

Extraction and fractionation

Dried and powdered leaves of S. filiforme (200 g) were extracted with a mixture of ethanol: water (2 L, 1:1 v/v) at room temperature for 1 week, filtered and concentrated to dryness to yield the total extract (5.05 g). Four grams of the total extract were fractionated with help of mechanic agitation with n-hexane (40 mL), chloroform (40 mL), n-butyl alcohol (40 mL) and water (40 mL), to yield n-hexane, chloroform, n-butanol (0.177, 1.255, 0.262 g, respectively), and H2O-soluble (1.627 g) fraction.

Preliminary phytochemicals studies

Quantification of metabolite families was performed by standard phytochemical reaction methods using UV detection: total polyphenols (British Pharmacopeia 2009), flavonoids (Woisky & Salatino, 1998), total anthocyanins (Fuleki & Salatino, 1998), alkaloids, total saponins (Dubois et al., 1956), chlorophylls (Wrolstad, 1981), has been with number IDO 165. The collected seagrass was washed sited in the collection of the National Aquarium from Cuba, titulate of Oceanology, Havana, Cuba. The voucher was depo

Cell viability assay

Cell viability was measured using the 3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyztetrazolium bromide (MTT) assay whereby the tetr唑ium salt, MTT is reduced by intracellular dehydrogenases of viable living cells leading to the formation of purple formazan crystals. Following UV-exposure, cells were washed twice with PBS and incubated in the presence of MTT salt solution at a concentration of 0.5 mg/mL for four hours at 37 °C. The medium was removed and the crystals were dissolved in DMSO. The optical density of each well was read at 540 nm using a microplate reader (Gómez-Lechón et al., 2003). Cell viability was expressed as a percentage of live cells compared to unexposed control.

Animals

The experimental procedure that involved the use of animals was approved by the Animal Ethics Committee of the Centre of Marine Bioproducts. Adult male albino mice, weighing approximately 25 g (Balb/C, 25 ±1.5 g), were obtained from the Center for Animal Lab Production (Havana, Cuba). Animals were maintained in individual cages on a 12:12 h light–dark cycle in a temperature-controlled room, with access to water and food ad libitum until use.

Irradiation and S. filiforme treatment

The UV apparatus consisted of a Spectroline™ lamp (Spectronics Corporation, New York, USA). The spectral irradiance for the UV lamps was 312 nm, providing 100% UVB. The irradiation was made at 30 cm from the dorsal surface of the mice. Prior to the assay, mice were depilated in the back (2 cm²). The vehicle or base cream used was a simple oil-in-water cosmetic emulsion without preservatives and this is prepared by adding the same volume of distilled water. The
crude extract and fractions were dissolved in distilled water and mixed with this base by manual agitation to produce creams. Immediately after exposure, animals were treated at 24 h-intervals for 7 days. At the completion of the experiment, mice were sacrificed by cervical dislocation and the skins were collected for histopathological study. A total of 60 mice (10 mice/group) were divided into: (a) Irradiated (irradiated without treatment), (b) placebo (irradiated and treated topically with vehicle), (c) Positive Control (irradiated and treated with an antiaging cream containing natural extracts, Ultra Facial (UF), Zermat International S.A), (d) Total extract (irradiated and topically treated with extract of S. filiforme), (e) Aqueous fraction (irradiated and treated topically with the corresponding aqueous fraction), f) chloroform fraction (irradiated and treated topically with the chloroform fraction). Treatments were applied evenly to the skin of the back at a rate of at 240 μg/cm² at least 15 min before UV irradiation.

Visual skin evaluation
Dermal alterations were assessed in a grading scale of 1 to 4 points for the evaluation of the test reactions, according to Glogau’s reference photographic scale (Glogau, 1996), giving a visual score from 1 = no wrinkles to 4 = very marked wrinkles. An individual not involved in the treatment and irradiation work carried out the visual evaluations blind, based on group number.

Histology
Six animals per group were analyzed. Their dorsal skins were dissected using a rectangular template (2 × 2 cm) to include the entire treated areas and processed with light microscopy. Slices of 6 μm were used for the analyses and stained with hematoxylin and eosin (H&E).

Statistical Analysis
Statistical analyses were done by using the statistical package SPSS V.15.0 for Windows. Comparisons between control and treated groups were done by the Mann Whitney U test. P<0.05 was considered to be statistically significant.

RESULTS AND DISCUSSION
Preliminary phytochemical analysis
Qualitative phytochemical analysis conducted on S. filiforme using standard phytochemical screening tests, revealed the presence of polyphenols, flavonoids, anthocyanins, saponins and reducing sugars. Among these, phenolic compounds were found to be the most abundant components (72.85 ± 0.72 PE) (Table 1). Furthermore, metabolites of phenolic nature (flavonoids and anthocyanins) were detected at significant concentrations (59.09 ± 0.45 QE and 5.3 ± 0.03 ME, respectively) in this extract. Additionally, other primary metabolites were quantified and results are shown in Table 1. These results are in agreement with the major classes of metabolites found in the family Cymodoceaceae (Subhashini et al., 2013).

In vivo photoprotective effect of S. filiforme
The UVB exposure induced macroscopic alterations in the mouse skin within the first 48 hour such as: erythema, scabs, roughness and wrinkling. The degree of wrinkling was reduced by previous treatment with S. filiforme. The peak of reaction occurred between 48 and 72 h in all animals.

Figure 1 shows the degree of damage that was observed in the animals of each experimental group after seven days of treatment, according to Glogau’s reference photographic scale, giving a visual score from 1 = no wrinkles to 4 = very marked wrinkles (Glogau, 1996). Repair of the acute damage induced by the UVB radiation with the application of the crude extract of S. filiforme was observed, as well as with the application of the derived aqueous fraction obtained.

In this study no evidence of sensitization on the skin of the animals in the model treated with the crude extract of S. filiforme was present.

The topical application of the crude extract of S. filiforme and the aqueous fraction, reduced the macroscopic alterations induced by UVB radiation acute exposure (Fig.1) similar to that of the positive control (Ultra Facial cream); whereas no effect was shown with chloroform fraction. The effects occurred at 240 μg.cm². This dose was chosen because it was evaluated in previous studies with good results and also to minimize the number of experimental animals.

The skin damage was significantly suppressed by 70-80% (mean value) at the end of the application period (7 days), to the extent that there were no significant differences between the controls.

These results were corroborated by histopathology (Fig. 2), where the non treated animals showed histopathologic alterations such as acanthosis, hyperkeratosis, infiltrating inflammatory cells, dilation and growth of blood vessels and collagen fiber degradation. Nevertheless, in the groups

Table 1. Quantitative chemical composition of the crude extract of S. filiforme.

<table>
<thead>
<tr>
<th>Metabolites</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyphenols</td>
<td>72.85 ± 0.72²</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>59.09 ± 0.45³</td>
</tr>
<tr>
<td>Anthocyanins</td>
<td>5.5 ± 0.03³</td>
</tr>
<tr>
<td>Proteins</td>
<td>5.3 ± 0.03⁴</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>67.88 ± 0.54⁴</td>
</tr>
<tr>
<td>Chlorophyll a b</td>
<td>0.25 ± 0.05⁵</td>
</tr>
<tr>
<td>Chlorophyll b</td>
<td>0.35 ± 0.03³</td>
</tr>
</tbody>
</table>

² mg pyrogallol equivalents/g dry extract (PE); ³ mg quercetin equivalents/g dry extract (QE); ⁴ mg malvidin-3-O-glucoside equivalents/g dry extract (ME); ⁵ mg BSA equivalents/g dry extract; ⁶ mg D (+) galactose equivalents/g dry extract; ⁷ μg/mL.

Table 1. Composición química cuantitativa del extracto crudo de S. filiforme

<table>
<thead>
<tr>
<th>Metabolitos</th>
<th>Concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polifenoles</td>
<td>72.85 ± 0.72²</td>
</tr>
<tr>
<td>Flavonoides</td>
<td>59.09 ± 0.45³</td>
</tr>
<tr>
<td>Antocianinas</td>
<td>5.5 ± 0.03³</td>
</tr>
<tr>
<td>Proteínas</td>
<td>5.3 ± 0.03⁴</td>
</tr>
<tr>
<td>Carbohidratos</td>
<td>67.88 ± 0.54⁴</td>
</tr>
<tr>
<td>Clorofilita a b</td>
<td>0.25 ± 0.05⁵</td>
</tr>
<tr>
<td>Clorofilita b</td>
<td>0.35 ± 0.03³</td>
</tr>
</tbody>
</table>

² mg equivalentes de pirogalol/g extracto seco (PE); ³ mg equivalentes de quercetina/g extracto seco (QE); ⁴ mg equivalentes de malvidina-3-O-glucósido/g extracto seco (ME); ⁵ mg equivalentes de BSA/g extracto seco; ⁶ mg equivalentes de D (+) galactosa/g extracto seco; ⁷ μg/mL.
treated topically with the creams that contain the crude extract or aqueous fraction, the erythema was eliminated, the acanthuses and hyperkeratosis were strongly diminished, the vascular damage was reduced and a reorganization of the collagen fiber was observed, compared with the skin irradiated but not treated. This suggests recovery of the skin after treatment.

Histopathological studies at the end of the experimental period, revealed the reorganization of parallel collagen bundles similar to that of non irradiated skin and an increase of fibroblasts. These results suggest the possibility of an increased synthesis of collagen fibers by hyperactive fibroblasts, after the application of the creams containing the crude extract that can also contribute to its skin repairing effect.

In relation to viability assessment, the extract at a dose of 1000 mg/Kg showed no cytotoxic activity in cells not exposed to UV-A as determined with the MTT assay.

The strong free radical scavenging effects of S. filiforome has been previously documented (Nuissier et al., 2010; González García et al., 2011). Studies have demonstrated that the highest antioxidant contents were obtained from methanolic and aqueous-methanolic extracts of fresh leaves.

Since free radicals play an important role in UV-induced damage, the underlying protective mechanism of S. filiforme could be linked, either directly or indirectly, to its antioxidative capability by the scavenging of free radicals responsible for DNA damage. In addition, it is known that the crude extract of S. filiforme contains caffeic and ferrulic acids.

CONCLUSIONS

The results of the present study indicate that S. filiforme is protective against chronic damage induced by UV radiation in the hairless mouse. Protection against visible changes and histological alterations were demonstrated. In recent years, there has been great interest in the use of dietary supplements that are derived from naturally occurring botanicals for the photoprotection of the skin, including protection from skin cancers. Considering these results, detrital leaves of S. filiforme could afford an interesting new raw material for the production of health-benefit products capable of attenuating the deleterious effects of UV on human skin. In
addition, the apparent null toxicity of the extract of *S. filiforme*, demonstrates their potential as functional, nutraceutical and pharmaceutical agent.

REFERENCES

