MODIFICATION OF LARD’S THERMAL PROPERTIES TO IMPROVE ITS FUNCTIONALITY: POTENTIAL COCOA BUTTER SUBSTITUTE

Autores/as

  • María del Carmen Gutiérrez Guerrero Universidad Autómona de Aguascalientes. Centro de Ciencias Básicas. Depto. de Ingeniería Bioquímica. C.P. 20131. Aguascalientes, Ags., México
  • Flor de María Alvarez Mitre Universidad Autónoma de San Luis Potosí; Facultad de Ciencias Químicas, Centro de Investigación y Estudios de Posgrado, Laboratorio de Fisicoquímica de Alimentos. C.P. 78210. San Luis Potosí, S.L.P., México
  • Jorge Fernando Toro Vazquez Universidad Autónoma de San Luis Potosí; Facultad de Ciencias Químicas, Centro de Investigación y Estudios de Posgrado, Laboratorio de Fisicoquímica de Alimentos. C.P. 78210. San Luis Potosí, S.L.P., México
  • Fidel Guevara Lara Universidad Autómona de Aguascalientes. Centro de Ciencias Básicas. Depto. de Química. C.P. 20131. Aguascalientes, Ags., México
  • Juan Jáuregui Rincón Universidad Autómona de Aguascalientes. Centro de Ciencias Básicas. Depto. de Ingeniería Bioquímica. C.P. 20131. Aguascalientes, Ags., México

DOI:

https://doi.org/10.18633/biotecnia.v21i1.810

Palabras clave:

Lard, Interesterification, Cocoa butter replacer

Resumen

Lard is an animal fat containing specific triacylglycerols (TAGs) where the saturated fatty acids are mainly located in the sn-2 position providing it with inadequate attributes for the food industry, such as graininess. By Interesterification, a redistribution of fatty acids within the glycerol molecule takes place modifying fats and oils properties. Interesterification of lard and coconut oil (CO) blends at 70:30 and 80:20 ratios, resulted in IBE70, IBE80 (enzymatic procedure) and IBC70, IBC80 (chemical procedure). They were characterized by their acidity index (AI), iodine index (II) and thermal behavior by differential scanning calorimetry (DSC). II results showed that the highly saturated TAGs in CO affects lard only at the 70:30 ratio. DSC results made evident that the IBE and IBC melting profiles are not significantly different. Additionally, they showed higher crystallization and melting enthalpies compared to native lard, indicating a higher degree of intermolecular arrangement. These findings led to an application as a potential cocoa butter (CB) substitute. A mixture (CBR80) of 20% IBE70 and 80% CB, resulted in a thermal behavior that most resembled CB. Microstructure and texture showed CBR80 as a feasible CB replacer.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adewale, P., Mba, O., Dumont, M.J., Ngadi, M., Cocciardi, R. 2014. Determination of the iodine value and the free fatty acid content of waste animal fat blends using FT-NIR. Vibrational Spectroscopy. 72: 72-78.

Campos, R., Narine, S., Marangoni, A. 2002. Effect on cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International. 35(10): 971-981.

Cassiday, L. Coconut Oil Boom. 2016. INFORM AOCS. Vol 27(5).

Chaleepa, K., Szepes, A., Ulrich, J. 2010. Effect of additives on isothermal crystallization kinetics and physical characteristics of coconut oil. Chemistry and Physics of Lipids. 163(4-5): 390-396.

Chen, B., McClements, D.J., Decker, E.A. 2013. Design of foods with bioactive lipids for improved health. Annual Review of Food Science and Technology. 4.1: 35-56.

CODEX ALIMENTARIUS. Amendment 2015. Norma para aceites vegetales especificados. CODEX STAN 210-1999. Revisión 2009.

CODEX ALIMENTARIUS. Amendment 2015. Norma para grasas animales especificadas. CODEX STAN 211-1999.

da Silva, R. C., Ribeiro, A. P. B., De Martini Soares, F. A. S., Capacla, I. R., Hazzan, M., dos Santos, A. O., Gioielli, L. A. 2013. Microstructure and thermal profile of structured Lipids produced by continuous enzymatic Interesterification. Journal of the American Oil Chemists’ Society. 90(5): 631-639.

De Clercq, N., Danthine, S., Nguyen, M. T., Gibon, V., Dewettinck, K. 2011. Enzymatic Interesterification of palm oil and fractions: Monitoring the degree of Interesterification using different methods. Journal of the American Oil Chemists’ Society. 89(2): 219–229.

de Oliveira, G.M., Badan Ribeiro, A.P., Guenter Kieckbusch, T.G. 2015. Hard fats improve technological properties of palm oil applications in fat-based products. LWT - Food Science and Technology. 63(2): 1155-1162.

Gregersen, S. B., Miller, R. L., Hammershøj, M., Andersen, M. D., Wiking, L. 2015. Texture and microstructure of cocoa butter replacers: Influence of composition and cooling rate. Food Structure. 4: 2–15.

Jiménez-Colmenero, Francisco. 2007. Healthier Lipid Formulation Approaches In Meat-Based Functional Foods. Technological Options For Replacement Of Meat Fats By Non-Meat Fats. Trends in Food Science & Technology. 18(11): 567-578.

Kadivar, S., De Clercq, N., Mokbul, M., Dewettinck, K. 2016. Influence of enzymatically produced sunflower oil based cocoa butter equivalents on the phase behavior of cocoa butter and quality of dark chocolate. LWT - Food Science and Technology. 66: 48–55.

Kadivar, S., De Clercq, N., Van de Walle, D., Dewettinck, K. 2013. Optimisation of enzymatic synthesis of cocoa butter equivalent from high oleic sunflower oil. Journal of the Science of Food and Agriculture. 94(7): 1325–1331.

Kiyotaka Sato. 2001. Crystallization behaviour of fats and lipids — a review. Chemical Engineering Science. 56(7): 2255-2265.

Lopes, T.I.B., Ribeiro, M.D.M.M., Ming, C.C., Grimaldi, R., Goncalves, L.A.G., Marsaioli, A.J. 2016. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance. Food Chemistry. 212: 641-647.

Meng, Z., Liu, Y., Shan, L., Jin, Q., Wang, X. 2010. Reduction of Graininess Formation in Beef Tallow-Based Plastic Fats by Chemical Interesterification of Beef Tallow and Canola Oil. Journal of the American Oil Chemists’ Society. 87(12): 1435-1442.

Miklos, R., Zhang, H., Lametsch, R., Xu, X. 2013. Physicochemical properties of lard-based diacylglycerols in blends with lard. Food Chemistry. 138: 608-614.

NMX-F-101-1987. 1987. Alimentos. Aceites y Grasas vegetales o animales. Determinación de Índice de Acidez. NORMAS MEXICANAS. Dirección General de Normas.

NMX-F-110-1999. 1999. Manteca de Cerdo. Denominación, especificaciones y Métodos de prueba. NORMAS MEXICANAS. Dirección General de Normas. Secretaría de Agricultura, Ganadería y Desarrollo Rural.

NMX-F-152-SCFI-2011. 2011. Alimentos – Aceites y Grasas Vegetales o Animales- Determinación del Índice de Yodo por el método Ciclohexano – Método de Prueba. NORMAS MEXICANAS. Dirección General de Normas. Secretaría de Economía.

Nugrahini, Arita Dewi, and Tatang Hernas Soerawidjaja. 2015. Directed Interesterification Of Coconut Oil To Produce Structured Lipid. Agriculture and Agricultural Science Procedia 3: 248-254.

Paula, A. V., Nunes, G. F. M., Osório, N. M., Santos, J. C., de Castro, H. F., Ferreira-Dias, S. 2014. Continuous enzymatic interesterification of milkfat with soybean oil produces a highly spreadable product rich in polyunsaturated fatty acids. European Journal of Lipid Science and Technology. 117(5): 608–619.

Ribeiro A.P. B., Basso, R.C., Grimaldi, R., Gioielli, L.A., Goncalves, L.A.G. 2009. Instrumental Methods for the Evaluation of Interesterified Fats. Food Anal. Methods. 2.4: 282-302.

Rios, R., Pessanha, M., Almeida, P., Viana, C., Lannes, S. 2014. Application of fats in some food products. Food Science and Technology (Campinas). 34(1): 3-15.

Roy, S.S. & Bhattacharyya, D.K. 1993. Distinction Between Enzymically and Chemically Catalyzed Interesterificarion. Journal of the American Oil Chemists’ Society. 70: 1293.

Seriburi, V., Akoh, C.C. 1998. Enzymatic Interesterification of Lard and High-Oleic Sunflower Oil with Candida antarctica Lipase to Produce Plastic Fats. Journal of the American Oil Chemists’ Society. 75(10): 1339-1345.

Shen, Z., Birkett, A., Augustin, M.A., Dungey, S., Versteeg, C. 2001. Melting Behavior of Blends of Milk Fat with Hydrogenated Coconut and Cottonseed Oils. Journal of the American Oil Chemists’ Society. 78(4): 387-394.

Silva, R. C. da, Soares, F. A. S. D. M., Hazzan, M., Capacla, I. R., Gonçalves, M. I. A., Gioielli, L. A. 2012. Continuous enzymatic interesterification of lard and soybean oil blend: Effects of different flow rates on physical properties and acyl migration. Journal of Molecular Catalysis B: Enzymatic. 76: 23–28.

Steen, L., Rigolle, A., Glorieux, S., Paelinck, H., Fraeye, I., Goderis, B., oubert, I. 2015. Isothermal crystallization behavior of lard at different temperatures studied by DSC and real-time XRD. Food Research International. 69: 49–56.

Wang, F., Liu, Y., Jin, Q., Meng, Z., Wang, X. 2011. Characterization of cocoa butter substitutes, milk fat and cocoa butter mixtures. European Journal of Lipid Science and Technology. 113(9): 1145–1151.

Wang, T., Wang, X., Wang, X. 2016. Effects of Lipid Structure Changed by Interesterification on Melting Property and Lipemia. Lipids. 51(10): 1115-1126.

Wirkowska-Wojdyla, M., Brys, J., Górska, A., Otrowska- Ligeza, E. 2016. Effect of enzymatic interesterification on physicochemical and thermal properties of fat used in cookies. LWT - Food Science and Technology. 74: 99-105.

Zhang, L., Yang, G., Chen, J., Bi, Y., Chen, S., Tan, D., Peng, D. 2015. Effect of lard quality on chemical Interesterification catalyzed by KOH/glycerol. Journal of the American Oil Chemists’ Society. 92(4): 513–521.

Descargas

Publicado

2018-12-23

Cómo citar

Gutiérrez Guerrero, M. del C., Alvarez Mitre, F. de M., Toro Vazquez, J. F., Guevara Lara, F., & Jáuregui Rincón, J. (2018). MODIFICATION OF LARD’S THERMAL PROPERTIES TO IMPROVE ITS FUNCTIONALITY: POTENTIAL COCOA BUTTER SUBSTITUTE. Biotecnia, 21(1), 29–36. https://doi.org/10.18633/biotecnia.v21i1.810

Número

Sección

Artículos originales

Métrica

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.