Composición química, contenido de proteína, aminoácidos y morfología de gónadas de erizo de mar (Strongylocentrotus franciscanus)

Autores/as

  • Dulce Alondra Cuevas-Acuña Departamento de Ciencias de la Salud. Universidad de Sonora. Blvd. Bordo Nuevo s/n, Antiguo Ejido Providencia. Cajeme, Sonora, México. C.P. 85010 https://orcid.org/0000-0002-6831-9523
  • Martina Hilda Gracia Valenzuela Instituto Tecnológico del Valle del Yaqui, Block 611, Bácum, San Ignacio Río Muerto, Ciudad Obregón, Sonora, México https://orcid.org/0000-0002-7780-2605
  • Hisila C. Santacruz-Ortega Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, México
  • Ramón Gertrudis Valdez Melchor Departamento de Ciencias de la Salud. Universidad de Sonora. Blvd. Bordo Nuevo s/n, Antiguo Ejido Providencia. Cajeme, Sonora, México. C.P. 85010 https://orcid.org/0000-0001-8765-0193
  • Joe Luis Arias-Moscoso Instituto Tecnológico del Valle del Yaqui, Block 611, Bácum, San Ignacio Río Muerto, Ciudad Obregón, Sonora, México https://orcid.org/0000-0002-2548-4625

DOI:

https://doi.org/10.18633/biotecnia.v21i3.1015

Palabras clave:

Strongylocentrotus franciscanus, gónadas, morfología, proteína, erizo de mar

Resumen

Las características físicas y químicas de las gónadas de erizo S. franciscanus fueron estudiadas usando métodos destructivos y no destructivos. Los organismos fueron recolectados en San Carlos, Nuevo Guaymas y procesados para ser evaluados. Se determinó la composición proximal de las gónadas obteniéndose el contenido de proteínas, lípidos, cenizas y humedad con valores de 13.63% ± 0.57; 5.04% ± 0.4; 3.73% ± 0.05; 75.40% ± 0.51 respectivamente. Para el estudio del perfil proteico, las gónadas se analizaron mediante electroforesis en gel de poliacrilamida disociante donde se obtuvieron numerosas fracciones relacionadas a proteínas sarcoplasmáticas y miofibrilares. Por otra parte, la composición de aminoácidos mostró la presencia de aminoácidos esenciales, siendo predominantes la leucina y la treonina; mientras que los aminoácidos no esenciales predominantes fueron ácido aspártico, acido glutámico y glicina. Además, la presente investigación muestra por primera vez las características morfológicas, usando microscopía electrónica de barrido, de las gónadas de erizo detectando la presencia de estructuras globulares relacionadas con la presencia de actina. Los resultados del estudio sobre la caracterización parcial mejorará la comprensión de las propiedades fisicoquímicas de las gónadas de erizo S. franciscanus, que ayudarán a determinar su aprovechamiento como fuentes novedosas de alimentos nutricionales o funcionales.

Citas

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P. 2014. Molecular Biology of the Cell W. W. N. Company Ed. 6 ed.

AOAC. 1998. Official methods of analysis of AOAC international. 16th ed. Gaithersbury, Maryland, USA.

Archana, A., and Babu, K. R. 2016. Nutrient composition and antioxidant activity of gonads of sea urchin Stomopneustes variolaris. Food Chemistry. 197: 597-602.

Belitz, H. D., Grosch, W., and Schieberle, P. 2009. Amino Acids, Peptides, Proteins. 4 ed. Food Chemistry: Springer-Verlag Berlin Heidelberg.

Bligh, E. G., and Dyer, W. J. 1959. A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 37: 911–917.

Capinpin, E. C. 2015. Growth and survival of sea urchin (Tripneustes gratilla) fed different brown algae in aquaria International Journal of Fauna and Biological Studies. 2:3, 56-60.

Chen, G. Q., Xiang, W. Z., Lau, C. C., Peng, J., Qiu, J. W., Chen, F., Jiang, Y. 2010. A comparative analysis of lipid and carotenoid composition of the gonads of Anthocidaris crassispina, Diadema setosum and Salmacis sphaeroides. Food Chemistry. 120: 4, 973-977.

Cline, C. A., Schatten, H., Balczon, R., and Schatten, G. 1983. Actin-mediated surface motility during sea urchin fertilization. Cell Motility. 3: 5, 513-524.

Damodaran, S., Parkin, K. L., and Fennema, O. R. 2010. FENNEMA Química de los alimentos 3th ed. Editorial Acribia S. A.

De la Cruz-García, C., López-Hernández, J., González-Castro, M. J., Rodríıguez-Bernaldo De Quirós, A. L., and Simal-Lozano, J. 2000. Protein, amino acid and fatty acid contents in raw and canned sea urchin (Paracentrotus lividus) harvested in Galicia (NW Spain). Journal of the science of food and agriculture. 80: 1189-1192.

Dincer, T., and Cakli, S. 2007. Chemical composition and biometrical measurements of the Turkish sea urchin (Paracentrotus Lividus, Lamarck, 1816). Critical Reviews in Food Science and Nutrition. 47: 1, 21-26.

Furman, B., and Heck, K. I. 2009. Differential impacts of echinoid grazers on coral recruitment. Bulletin of Marine Science. 85: 2, 121-132.

Goldan, O., Popper, D., and Karplus, I. 1997. Management of size variation in juvenile gilthead sea bream (Sparus aurata). I: Particle size and frequency of feeding dry and live food. Aquaculture. 152: 1-4, 181-190.

Gonzalez-Duran, E., Castell, J. D., Robinson, S. M. C., and Blair, T. J. 2008. Effects of dietary lipids on the fatty acid composition and lipid metabolism of the green sea urchin Strongylocentrotus droebachiensis. Aquaculture. 276: 1-4, 120-129.

James, D. B. 2008. Indian echinoderms their resources biodiversity zoogeography and conservation. Glimpses of Aquatic Biodiversity. 7: 120-132.

Kang, H., Bang, I., Jin, K. S., Lee, B., Lee, J., Shao, X., Heier, J. A., Kwiatkowski, A. V., Nelson, W. J., Hardin, J., Weis, W. I., Choi, H.-J. 2017. Structural and functional characterization of Caenorhabditis elegans α-catenin reveals constitutive binding to β-catenin and F-actin. Journal of Biological Chemistry. 292: 17, 7077-7086.

Komata, Y. 1964. Study on the extractives of ‘‘uni” IV. Taste of each component in the extractives. Nippon Suisan Gakkaishi. 30: 749-756.

Ladrat, C., Verrez-Bagnis, V., Noël, J., and Fleurence, J. 2003. In vitro proteolysis of myofibrillar and sarcoplasmic proteins of white muscle of sea bass (Dicentrarchus labrax L.): effects of cathepsins B, D and L. Food Chemistry. 81: 4, 517-525.

Laemmli, U. 1970. Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature Genetics. 227: 5259, 680-685.

Lawrence, J. M. 2006. Gametogenesis and Reproduction of Sea Urchins. En: Edible Sea Urchins: Biology and Ecology. 2 ed., pp 11-33. Elsevier. Tampa, Florida.

Liyana-Pathirana, C., Shahidi, F., and Whittick, A. 2002. The effect of an artificial diet on the biochemical composition of the gonads of the sea urchin (Strongylocentrotus droebachiensis). Food Chemistry. 79: 4, 461-472.

Lopez-Enriquez, R. L., Ocano-Higuera, V. M., Torres-Arreola, W., Ezquerra-Brauer, J. M., and Marquez-Rios, E. 2015. Chemical and functional characterization of sarcoplasmic proteins from giant squid (Dosidicus gigas) mantle. Journal of Chemistry. 2015: 1-10.

Mol, S., Baygar, T., Varlik, C., and Tosun, S. Y. 2008. Seasonal variations in yield, fatty acids, amino acids and proximate composition of sea urchin Paracentrotus lividus roe. Journal of Food and Drug Analysis. 16: 2, 68-74.

Murata, Y., and Sata, N. U. 2000. Isolation and Structure of Pulcherrimine, a Novel Bitter-Tasting Amino Acid, from the Sea Urchin (Hemicentrotus pulcherrimus) Ovaries. Journal of Agricultural and Food Chemistry. 48: 11, 5557-5560.

Murray, R. K., Granner, D. K., Rodwell, V. W. 2007. Harper Bioquímica ilustrada. 17a ed. México.

Osako, K., Kiriyama, T., Ruttanapornvareesakul, Y., Kuwahara, K., Okamoto, A., and Nagano, N. 2006a. Free amino acid composition of the gonad of the wild and cultured sea urchins Anthocidaris crassispina. Aquaculture Science. 54: 3, 301-304.

Osako, K., Hossain, M. A., Ruttanapornvareesakul, Y., Fujii, A., Kuwahara, K., Okamoto, A., Nagano, N. 2006b. The aptitude of the green alga Ulva pertusa as a diet for purple sea urchin Anthocidaris crassispina. Aquaculture Science. 54: 1, 15-23.

Palleiro-Nayar, J. S., Salgado-Rogel, M. L., and Montero-Aguilar, D. 2008. La pesca del erizo morado, Strongylocentrotus purpuratus, y su incremento poblacional en Baja California, México. Ciencia Pesquera. 16: 29-35.

Pozharitskaya, O. N., Shikov, A. N., Laakso, I., Seppänen-Laakso, T., Makarenko, I. E., Faustova, N. M., Makarova, M. N., Makarov E. G. 2015. Bioactivity and chemical characterization of gonads of green sea urchin Strongylocentrotus droebachiensis from Barents Sea. Journal of Functional Foods. 17: 227-234.

Rao, M. A., Syed, S. H., Rizvi, A., and Ahmed, J. 2014. Engineering properties of foods. Forth ed. Boca Raton CRC Press.

Rosas-Romero, Z. G., Ramirez-Suarez, J. C., Pacheco-Aguilar, R., Lugo-Sánchez, M. E., Carvallo-Ruiz, G., and García-Sánchez, G. 2010. Partial characterization of an effluent produced by cooking of Jumbo squid (Dosidicus gigas) mantle muscle. Bioresource technology. 101: 2, 600-605.

SAGARPA. 2017. Anuario estadístico de acuacultura y pesca. Comision Nacional de Acuacultura y Pesca. México.

Shikov, A. N., Laakso, I., Pozharitskaya, O. N., Seppänen-Laakso, T., Krishtopina, A. S., Makarova, M. N., Vuorela, H., Makarov, V. 2017. Chemical Profiling and Bioactivity of Body Wall Lipids from Strongylocentrotus droebachiensis. Marine Drugs. 15: 12, 365.

Shpigel, M., Mc Bride, S. C., Marciano, S., Ron, S., and Ben-Amotz, A. 2005. Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture. 245: 1-4, 101-109.

Sloan, N. A. 1985. Echinoderm fisheries of the world: A review. Echinodermata Rotterdam, Netherlands: A. A. Balkem Publishers.

Stewart, P. L., Makabi, M., Lang, J., Dickey-Sims, C., Robertson, A. J., Coffman, J. A., Suprenant, K.A. 2005. Sea urchin vault structure, composition, and differential localization during development. BMC Developmental Biology. 5: 3, 1-12.

Tan, Y., and Chang, S. K. 2018. Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chemistry. 242: 147-155.

Tuya, F., Boyra, A., Sanchez-Jerez, P., Barbera, C., and Haroun, R. 2004. Can one species determine the structure of the benthic community on a temperate rocky reef? The case of the long-spined sea-urchin Diadema antillarum (Echinodermata: Echinoidea) in the eastern Atlantic. Hydrobiologia. 519: 1-3, 211-214.

Vázquez-Ortiz, F. A., Caire, G., Higuera-Ciapara, I., and Hernández, G. 1995. High performance liquid chromatographic determination of free amino acids in shrimp. Journal of Liquid Chromatography. 18: 10, 2059-2068.

Yokota, Y., Matranga, V., and Smolenicka, Z. 2002. The sea urchin: From basic biology to aquaculture. Rotterdam A. A. Balkem Publishers.

Zhou, X., Y., Z. D., Lu, T., Liu, Z. Y., Zhao, Q., Liu, Y. X., Hu, X. P., Zhang, J. H., and Shahidi, F. 2018. Characterization of lipids in three species of sea urchin. Food Chemistry. 241: 97-103.

Zhu, B. W., Qin, L., Zhou, D. Y., Wu, H. T., Wu, J., Yang, J. F., Li, D. M., Dong, X. P., and Murata, Y. 2010. Extraction of lipid from sea urchin (Strongylocentrotus nudus) gonad by enzyme-assisted aqueous and supercritical carbon dioxide methods. European Food Research and Technology. 230: 5, 737-743.

Descargas

Publicado

2019-07-18

Número

Sección

Artículos