Eficiencia de técnicas sensoriales para la evaluación de quesos artesanales elaborados con diferentes cuajos comerciales

Autores/as

  • Lorena Guadalupe Ramón-Canul Universidad de la Sierra Sur. Calle Guillermo Rojas Mijangos s/n, Ciudad Universidad, Miahuatlán de Porfirio Díaz, Oaxaca https://orcid.org/0000-0002-1974-3256
  • Gema María López-Guzmán Tecnológico Nacional de México /Instituto Tecnológico de Comitancillo. Carretera Ixtaltepec-Comitancillo Km. 7.5, San Pedro Comitancillo, Oaxaca
  • José Andrés Herrera-Corredor Colegio de Postgraduados Campus Córdoba. Km. 348 Carretera Federal Córdoba, Veracruz, México. C.P. 94500 https://orcid.org/0000-0002-2392-2521
  • Víctor Daniel Cuervo-Osorio Tecnológico Nacional de México/Instituto Tecnológico Superior de Zongolica, Veracruz, México. C.P. 95005 https://orcid.org/0000-0002-9810-3379
  • Emmanuel de Jesús Ramírez-Rivera Tecnológico Nacional de México/Instituto Tecnológico Superior de Zongolica, Veracruz, México. C.P. 95005 https://orcid.org/0000-0002-3865-1314

DOI:

https://doi.org/10.18633/biotecnia.v21i3.1044

Palabras clave:

QDA®, Discriminación sensorial, Napping®, Perfil Ultra-Flash, Perfil Flash

Resumen

El propósito del presente estudio fue determinar la eficiencia de tres técnicas sensoriales para la caracterización de quesos artesanales elaborados con diferentes cuajos comerciales en sistemas de producción. Quesos frescos elaborados con diferentes concentraciones de cuajos comerciales fueron caracterizados mediante las técnicas QDA®, Perfil Flash y Napping®-Perfil Ultra-Flash. Los datos fueron analizados en tres etapas: 1) Generación de vocabularios y desempeño por panel; 2) Comparación de vocabularios y mapas sensoriales y 3) Comparación de la discriminación sensorial. Los resultados mostraron que mediante la técnica QDA® se obtuvo un vocabulario sensorial de nueve atributos de 29 propuestos. Con la técnica Perfil Flash solo 39 de 82 atributos fueron significativos y con la técnica Napping®-Perfil Ultra-Flash solamente 20 de 64 atributos fueron importantes. Los quesos fueron clasificados correctamente en función al tipo y concentración de cuajo mediante la técnica QDA®. Sin embargo, el poder de discriminación alto se obtuvo con la técnica Perfil Flash. Se concluye que la técnica Perfil Flash es eficiente para la generación de terminología sensorial y diferenciación de quesos artesanales. Aunque, la combinación de las técnicas Perfil Flash y QDA® pudieran ayudar para obtener una mejor definición en la caracterización sensorial.

Citas

Albert, A; Varela, P; Salvador, A; Hough, G. y Fiszman, S. 2011. Overcoming the issues in the sensory description of hot served food with a complex texture. Application of QDA®, flash profiling and projective mapping using panels with different degrees of training. Food Quality and Preference. 22(5):463-473.

Ares, G; Varela, P; Rado, G. y Giménez, A. 2011. Are consumer profiling techniques equivalent for some product categories? The case of orange-flavored powder drinks. International Journal Food Science and Technology. 46:1600-1608.

Barcenas, P; Pérez-Elortondo, F.J. y Albisu, M. 2004. Projective mapping in sensory analysis of ewes milk cheeses: A study on consumers and trained panel performance. Food Research International. 37:723-729.

Cadoret, M. y Husson, F. 2013. Construction and evaluation of confidence ellipse applied at sensory data. Food Quality and Preference. 28:106-115.

Da Silva, T. L. T; de Souza, V. R; Pinheiro, A. C. M; Nunes, C. A. y Freire, T. V. M. 2014. Equivalence salting and temporal dominance of sensations analysis for different sodium chloride substitutes in cream cheese. International Journal of Dairy Technology. 67:31-38.

Dairou, V. y Sieffermann J. M. 2002. A comparison of 14 jams characterized by conventional profile and a quick original method, the flash profile. Journal of Food Science. 67(2):826- 834.

Dehlholm, C; Brockhoff, P. B; Meinert, L; Aaslyng, M. D. y Bredie, W. L. P. 2012. Rapid descriptive sensory methods – Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Quality and Preference. 26:267-277.

Gkatzionis, K; Hewson, L; Hollowood, T; Hort, J; Dodd, C. E. R. y Linforth R. S. T. 2013. Effect of Yarrowia lipolytica on blue cheese odour development: Flash profile sensory evaluation of microbiological models and cheeses. International Dairy Journal. 30:8-13.

Gellynck, X; Kuhne, B; Van, B. F; Van, W.D. y Dewettinck, K. 2009. Consumer perception of bread quality. Food Quality and Preference. 53:16-23.

Husson, F; Lê , S. y Cadoret, M. 2017. SensoMineR: Sensory Data Analysis. R package version 1.23. [Disponible en: https://CRAN.R-project.org/package=SensoMineR ].

ISO 8586–1. 1993. Sensory Analysis–General Guidance for the Selection, Training, and Monitoring of Assessors, Part 1 – Selected assessors. Geneva, Switzerland.

ISO 11035. 1994. Sensory analysis- Identification and selection of descriptors for establishing a sensory profile by a multidimensional approach. Geneva, Switzerland.

ISO 16820. 2004. Sensory analysis — Methodology —Sequential analysis. Geneva, Switzerland.

ISO 4120. 2004. Sensory analysis. Methodology. Triangle test. Geneva, Switzerland.

ISO 10399. 2004. Sensory analysis—Methodology—Duo-trio test. Geneva, Switzerland.

ISO 5496. 2005. Sensory analysis–Methodology–Initiation and training of assessors in the detection and recognition of odors. Geneva, Switzerland.

Josse, J; Pagés, J. y Husson, F. 2008. Testing the significance of the RV coefficient. Computational statistics and data analysis. 53:82-91.

Kennedy, J. 2010. Evaluation of replicated projective mapping of granola bars. Journal of Sensory Studies. 25:672-684.

Liu, J; Grønbeck, M. S; Di Monaco, R; Giacalone, D. y Bredie, W. 2016. Performance of flash profile and napping with and without training for describing small sensory differences in a model wine. Food Quality and Preference. 48:41-49.

López-Guzmán, G; Palomec-Aragón, E; Carrasco-Ramírez, K. C; Mata-Luis, R; Castillejos-Antonio, Z; Ramírez-Rivera, E. J. y Santiago-Cabrera, R. 2012. Elaboración de queso fresco “cuajada” con dos tipos de cuajos comerciales: impacto sobre las reacciones de preferencia de los consumidores. Revista Venezolana de Ciencia y Tecnología de Alimentos. 3(1):14-27.

MacFie, H. J; Bratchell, N; Greenhoff, K; y Vallis, L. V. 1989. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. Journal of Sensory Studies. 4:129-148.

Perrin, L. y Pagès, J. 2009.Construction of a product space from the ultra-flash profiling method: application to 10 red wines from the Loire valley. Journal of Sensory Studies. 24:372-395.

Perrin, L; Symonneaux, R; Maître, I; Asselin, C; Jourjon, F. y Pagès, J. 2008. Comparison of three sensory methods for use with the Napping procedure: Case of ten wines from Loire valley. Journal Food Quality and Preference. 19:1-11.

R Core Team. 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Disponible en:www.R-project.org].

Rainey, B. 1986. Importance of reference standards in training panelists. Journal of Sensory Studies. 1:149-154.

Ramírez-Rivera, E. J; Díaz-Rivera, P; Ramón-Canul, L. G; Juárez-Barrientos, J. M; Rodríguez-Miranda, J; Herman- Lara, E; Prinyawiwatkul, W. y Herrera-Corredor, J. A. 2018. Comparison of performance and quantitative descriptive analysis sensory profiling and its relationship to consumer liking between the artisanal cheese producers panel and the descriptive trained panel. Journal of Dairy Science. 101: 5851-5864.

Ramírez-Rivera, E.J; Juárez-Barrientos, J. M; Rodríguez-Miranda, J; Díaz-Rivera, P; Ramón-Canul, L. G; Herrera-Corredor, J. A; Hernández-Serrano, M. I. y Herman-Lara, E. 2017a. Typification of a goat fresh cheese of México by path models. Turkish Journal of Veterinary and Animal Sciences. 41:213-220.

Ramírez-Rivera, E.J; Ramón-Canul, L. G; Díaz-Rivera, P; Juárez- Barrientos, J. M; Herman-Lara, E; Prinyawiwatkul, W. y Herrera-Corredor, J.A. 2017b. Sensory profiles of artisan goat cheeses as influenced by the cultural context and the type of panel. International Journal of Food Science & Technology. 52:1789-1800.

Rodrigues, J. F; Gonçalves, C. S; Pereira, R. C; Carneiro, J. D. S. y Pinheiro, A. C. M. 2014. Utilization of temporal dominance of sensations and time intensity methodology for development of low-sodium Mozzarella cheese using a mixture of salts. Journal of Dairy Science. 97(8):4733-4744.

Tomic, O; Luciano, G; Nilsen, A; Hyldig, G; Lorensen, K. y Naes, T. 2010. Analyzing sensory panel performance in a proficiency test using the Panel CHECK software. European Food Research and Technology. 230:497-511.

Tomic, O; Nilsen, A; Martens, M. y Naes, T. 2007. Visualization of sensory profiling data for performance monitoring. LWT Food Science and Technology. 40:262-269.

Vidal, L; Silva-Cadena, R; Correa, S; Ábalos, R.A; Gómez, B; Giménez, A; Varela, P. y Ares, G. 2014. Assessment of global and individual reproducibility of projective mapping with consumers. Journal of Sensory Studies. 29:74-87.

Descargas

Publicado

2019-07-19

Número

Sección

Artículos