Mejoramiento del desempeño hidrodinámico de un digestor anaeróbico de laguna cubierta mediante CFD//Improving the hydrodynamic performance of a covered lagoon anaerobic digester by CFD
DOI:
https://doi.org/10.18633/biotecnia.v22i1.1125Palabras clave:
PIV, modelo a escala, espacio muerto, Mezclado, digestiónResumen
La digestión anaeróbica de residuos de explotacionespecuarias presenta beneficios tales como, la reducción de olores y agentes patógenos, la producción de biogás y biofertilizantes. La producción de metano está influenciada, entre otros factores, por el desempeño hidrodinámico del digestor. El objetivo de esta investigación fue construir y validar un modelo numérico basado en Dinámica de Fluidos Computacional (CFD), a partir de un prototipo de un digestor anaeróbico de laguna cubierta. Las simulaciones del modelo en CFD fueron realizadas a partir de las características del reactor y las propiedades del fluido de trabajo. Para comprobar la concordancia del modelo, los resultados numéricos se relacionaron con datos experimentales generados mediante Velocimetría de Imágenes de Partículas (PIV) en un modelo a escala del digestor original. Con el modelo validado, se simularon cuatro alternativas de diseño. Los resultados mostraron mayor eficiencia del patrón de flujo al incluir recirculación. La reducción de espacio muerto entre configuraciones propuestas con respecto al original osciló entre 12,7-19,2%. La configuración de mejor desempeño hidrodinámico fue con recirculación de 2/3 de la alimentación en la entrada original y el otro tercio la distancia de 12 m y con un ángulo de 90° respecto a la línea de entrada.
ABSTRACT
Anaerobic digestion of livestock waste has benefits such as reduction of odours and pathogens, production of biogas and biofertilizers. Methane production is influenced, among other factors, by the hydrodynamic performance of the digester. The objective of this research was to construct and validate a numerical model based on Computational Fluid Dynamics (CFD), from a prototype of a covered lagoon anaerobic digester. CFD model simulations were performed from reactor characteristics and working fluid properties. To check the agreement of the model, the numerical results were related to experimental data generated by Particle Imaging Velocimetry (PIV) in a scale model of the original digester. With the validated model, four design alternatives were simulated. The results showed greater efficiency of the flow pattern by including recirculation. The reduction in dead space between proposed configurations with respect to the original, ranged from 12.7-19.2%. The best hydrodynamic performance configuration was with recirculation of 2/3 of the feed at the original inlet and the other third at 12 m and at an angle of 90° to the input line.
Descargas
Citas
Achkari-Begdouri, A., Goodrich, P.R. 1992. Rheological properties of Moroccan dairy cattle manure. Bioresource Technology, 40(2), 149-156.
ANSYS, I. 2009. ANSYS Fluent. 12.0 Theory guide, United States.
Azargoshasb, H., Mousavi S.M., Amani T., Jafari A., Nosrati M. 2015. Three-phase CFD simulation coupled with population balance equations of anaerobic syntrophic acidogenesis and methanogenesis reactions in a continuous stirred bioreactor. Journal of Industrial and Engineering Chemistry. Volume 27, 25 July 2015, Pages 207-217
Baroutian, S., Eshtiaghi, N., Gapes, D.J. 2013. Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration. Bioresource Technology, 140, 227-233.
Benbelkacem, H., Garcia-Bernet, D., Bollon, J., Loisel, D., Bayard, R., Steyer, J.-P., Gourdon, R., Buffière, P., Escudié, R. 2013. Liquid mixing and solid segregation in high-solid anaerobic digesters. Bioresource Technology, 147, 387-394.
Bridgeman, J. 2012. Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Advances in Engineering Software, 44(1), 54-62.
Chen, X.-g., Zheng, P., Guo, Y.-j., Mahmood, Q., Tang, C.-j., Ding, S. 2010. Flow patterns of super-high-rate anaerobic bioreactor. Bioresource Technology, 101(20), 7731-7735.
Chen, Y.R. 1986. Rheological properties of sieved beef-cattle manure slurry: Rheological model and effects of temperature and solids concentration. Agricultural Wastes, 15(1), 17-33.
Chhabra, R.P., Richardson, J.F. 2011. Non-Newtonian Flow and Applied Rheology: Engineering Applications. Elsevier Science.
Coughtrie, A.R., Borman, D.J., Sleigh, P.A. 2013. Effects of turbulence modelling on prediction of flow characteristics in a bench-scale anaerobic gas-lift digester. Bioresource Technology, 138, 297-306.
Craig, K.J., Nieuwoudt, M.N., Niemand, L.J. 2013. CFD simulation of anaerobic digester with variable sewage sludge rheology. Water Research, 47(13), 4485-4497.
Dai, X., Gai, X., Dong, B. 2014. Rheology evolution of sludge through high-solid anaerobic digestion. Bioresource Technology, 174, 6-10.
Dapelo D. and Bridgeman J. 2018. Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFD. Bioresource Technology 265 (2018) 480–489. https://doi.org/10.1016/j.biortech.2018.06.036
Dapelo, D., Alberini, F., Bridgeman, J. 2015. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion. Water Research, 85, 497-511.
Denka K. I., Zhai X., Wu B. 2018. Influence of Mixing on Anaerobic Digestion Efficiency in Stirred Tank Digesters: A Review, Water Research.143, 503-517. doi: 10.1016/j.watres.2018.06.065
Ding, J., Wang, X., Zhou, X.-F., Ren, N.-Q., Guo, W.-Q. 2010. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology, 101(18), 7005-7013.
El-Mashad, H.M., van Loon, W.K.P., Zeeman, G., Bot, G.P.A. 2005. Rheological properties of dairy cattle manure. Bioresource Technology, 96(5), 531-535.
Eshtiaghi, N., Yap, S.D., Markis, F., Baudez, J.-C., Slatter, P. 2012. Clear model fluids to emulate the rheological properties of thickened digested sludge. Water Research, 46(9), 3014- 3022.
Espinosa-Solares, T., Morales-Contreras, M., Robles-Martínez, F., García-Nazariega, M., Lobato-Calleros, C. 2008. Hydrodynamic Characterization of a Column-type Prototype Bioreactor. Applied Biochemistry and Biotechnology, 147(1- 3), 133-142.
Hreiz, R., Adouani, N., Fünfschilling, D., Marchal, P., Pons, M.-N. 2017. Rheological characterization of raw and anaerobically digested cow slurry. Chemical Engineering Research and Design, 119, 47-57.
Karim, K., Varma, R., Vesvikar, M., Al-Dahhan, M.H. 2004. Flow pattern visualization of a simulated digester. Water Research, 38(17), 3659-3670.
Leonzio G. 2018. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis. Renewable Energy 123 (2018) 578e589.
López-Jiméneza, P.A., Escudero-Gonzáleza J., Montoya M. T., Fajardo M. V., Gualtieri B.C. 2015. Application of CFD methods to an anaerobic digester: The case of Ontinyent WWTP, Valencia, Spain. Journal of Water Process Engineering 7 (2015) 131–140. http://dx.doi.org/10.1016/j.jwpe.2015.05.006
Low, S.C., Parthasarathy, R., Slatter, P., Eshtiaghi, N. 2012. Hydrodynamics Study of Sludge in Anaerobic Digesters. Chemical Engineering Transactions, 29, 1321-1326.
Meroney, R.N., Colorado, P.E. 2009. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks. Water Research, 43(4), 1040-1050.
Patankar, S.V. 1980. Numerical heat transfer and fluid flow. Hemisphere Pub. Corp.
Ranganathan P. and Savithri S. 2018. Computational Fluid Dynamics simulation of hydrothermal liquefaction of microalgae in a continuous plug-flow reactor. Bioresource Technology 258 (2018) 151–157. https://doi.org/10.1016/j. biortech.2018.02.076
Rasouli M., Mousavi M. S., Azargoshasb H., Jamialahmadi O., Ajabshirchi, Y. 2018. CFD simulation of fluid flow in a novel prototype radial mixed plug-flow reactor. Journal of Industrial and Engineering Chemistry. Volume 64, 25 August 2018, Pages 124-133. https://doi.org/10.1016/j.jiec.2018.03.008
Rezvani F., Azargoshasb H., Jamialahmadi O., Hashemi- Najafabadi S. 2015. Experimental study and CFD simulation of phenol removal by immobilization of soybean seed coat in a packed-bed bioreactor. Biochemical Engineering Journal 101 (2015) 32–43. http://dx.doi.org/10.1016/j.bej.2015.04.019
Ruzicka, M.C. 2008. On dimensionless numbers. Chemical Engineering Research and Design, 86(8), 835-868.
Sajjadi B., Aziz A. R. A., Parthasarathy R. 2016. Fluid dynamic analysis of non-Newtonian flow behavior of municipal sludge simulant in anaerobic digesters using submerged, recirculating jets. Chemical Engineering Journal 298 (2016) 259–270
Vesvikar, M.S., Al-Dahhan, M. 2005. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnology and Bioengineering, 89(6), 719-732.
Wu B. 2014. CFD simulation of gas mixing in anaerobic digesters. Computers and Electronics in Agriculture 109 (2014) 278– 286. http://dx.doi.org/10.1016/j.compag.2014.10.007
Wu, B. 2010a. CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters. Water Research, 44(13), 3861-3874.
Wu, B. 2010b. CFD simulation of mixing in egg-shaped anaerobic digesters. Water Research, 44(5), 1507-1519.
Wu, B. 2012. Advances in the use of CFD to characterize, design and optimize bioenergy systems. Computers and Electronics in Agriculture 93, 195–208.
Wu, B., Chen, S. 2008. CFD simulation of non-Newtonian fluid flow in anaerobic digesters. Biotechnology and Bioengineering, 99(3), 700-711.
Wu, B., Chen, Z. 2011. An integrated physical and biological model for anaerobic lagoons. Bioresource Technology, 102(8), 5032-5038.
Yu, L., Ma, J., Chen, S. 2011. Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresource Technology, 102(2), 1012-1018.
Zhang, Y., Yu, G., Yu, L., Siddhu, M.A.H., Gao, M., Abdeltawab, A.A., Al-Deyab, S.S., Chen, X. 2016. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion. Bioresource Technology, 203, 166- 172.
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)