Assessment of antioxidant enzymes in leaves and roots of Phaseolus vulgaris plants under cadmium stress//Evaluación de enzimas antioxidantes en hojas y raíces de plantas Phaseolus vulgaris bajo estrés de cadmio
DOI:
https://doi.org/10.18633/biotecnia.v22i2.1252Palabras clave:
cadmium, oxidative stress, antioxidant enzymes, Phaseolus vulgarisResumen
The aim of this work was to evaluate the response of Phaseolus vulgaris plants to oxidative stress by cadmium in leaves and roots at different concentrations (0 (control), 0.25, 0.50 and 1 μM). We assessed oxidative stress by the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as protein content. Likewise, we determined the antioxidant enzymatic activity of the superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX) enzymes. The results demonstrated a decrease in protein content of roots and leaves, starting with the addition of 0.25 μM Cd, but the MDA content and H2O2 levels increased with the addition of 0.25, 0.50 and 1 μM Cd, this due to the formation of reactive oxygen species. The SOD, APX and GPX enzymatic activity increased in roots treated with 0.25 μM Cd, but these enzymes decreased to higher concentrations (0.50 and 1 μM). On the other hand, the activity of CAT increased in leaves exposed to 0.5 and 1 μM of Cd. These results indicate that these antioxidant enzymes can act simultaneously in the elimination of reactive oxygen species.
RESUMEN
El objetivo del presente estudio fue evaluar la respuesta de plantas de Phaseolus vulgaris al estrés oxidativo causado por el cadmio en hojas y raíces en diferentes concentraciones, las cuales fueron 0 (control), 0,25, 0,50 y 1 μM de cadmio. El estrés oxidativo se evaluó mediante el contenido de peróxido de hidrógeno (H2O2) y malondialdehído (MDA), así como el contenido de proteína. Asimismo, se determinó la actividad enzimática antioxidante de las enzimas superóxido dismutasa (SOD), catalasa (CAT), ascorbato peroxidasa (APX) y guaiacol peroxidasa (GPX). Los resultados demostraron una disminución en el contenido de proteínas de las raíces y hojas a partir de la concentración 0.25 μM de Cd, pero el contenido de MDA y los niveles de H2O2 aumentaron con la adición de 0.25, 0.50 y 1 μM de Cd, esto debido a la formación de especies reactivas de oxígeno. La actividad enzimática de SOD, APX y GPX aumentaron en las raíces tratadas con 0.25 μM de Cd, pero estas enzimas disminuyeron a concentraciones más altas (0.50 y 1 μM). Por otro lado, la actividad de CAT aumentó en las hojas expuestas a 0.5 y 1 μM de Cd. Estos resultados indican que estas enzimas antioxidantes pueden actuar simultáneamente contra la eliminación de las especies reactivas de oxígeno.
Descargas
Citas
Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105: 121-126.
Asada, K. 1992. Ascorbate peroxidase: A hydrogen peroxide scavenging enzyme in plants. Physiolgia Plantarum. 85: 235-241.
Ashraf, U., Kanu, A.S., Mo, Z., Hussain, S., Anjum S.A., Khan, I., Abbas, R.N., Tang, X. 2015. Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environmental Science and Pollution Research. 22: 18318-18332.
Balestri, M., Bottega, S., Spano, C. 2014. Response of Pteria vittata to different cadmium treatment. Acta Physiologiae Plantarum. 36: 767-775.
Bankaji, I., Cacador, I., Sleimi, N. 2015. Physiological and biochemical responses of Sauceda fruticosa to cadmium and copper stresses: growth, nutrient uptake, antioxidant enzymes, phytochelatin and glutathione levels. Environmental Science Pollution Research. 22: 13058-13069.
Beyer, W.F., Fridovich, I. 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochemistry. 161: 559-566.
Bhaduri, A., Fulekar, M.H. 2012. Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science and Biotechnology. 11: 55-69.
Christou, A., Manganaris, G.A., Fotopoulos, V. 2014. Systemic mitigation of salt stress by hydrogen peroxide and sodium nitroprusside in strawberry plants via transcriptional regulation of enzymatic and non-enzymatic antioxidants. Environmental and Experimental Botany. 107: 46-54.
Cuypers, A., Hendrix, S., Amaral dos Reis, R., De Smet, S., Deckers, J., Gielen, H., Jozefczak, M., Loix, C., Vercampt, H., Vangronsveld, J., Keunen, E. 2016. Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Frontiers in Plant Science. 7: 470.
Deng, G., Li, M., Li, H., Yin, L., Li, W. 2014. Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteriodoides). Aquatic Botany. 112: 23-32.
Gallego, S.M., Benavides, M.P., Tomaro, M.L. 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science. 121:151-159.
Gerard-Monnier, D., Erdelmeier, I., Regnard, K., Moze-Henry, N., Yadan, J.C., Chaudiere, J. 1998. Reactions of 1-Methyl-2- phenylindole with malondialdehyde and 4-Hydroxyalkenals. Analytical Applications to a colorimetric assay of lipid peroxidation. Chemical Research in Toxicology. 11: 1176-1183.
Gill, S.S., Anjum, N.A., Gill, R., Hasanuzzaman, M., Sharma, P., Tuteja, N. 2013. Mechanism of Cadmium Toxicity and Tolerance in Crop Plants. In: Tuteja, N., Gill, S.S. (eds) Crop Improvement Under Adverse Conditions. pp 361-385. Springer Science+Business Media New York.
Gill, S.S., Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48: 909-930.
Groppa, M.D., Tomaro, M.L., Benavides, M.P. 2007. Polyamines and heavy metal stress: the antioxidant behavior of spermine in cadmium- and copper-treated wheat leaves. Biometals. 20:185-195.
Halliwell, B. 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology. 141: 312-322.
Hasanuzzaman, M., Hossain, M.A., Teixeira da Silva, J.A., Fujita, M. 2012. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Venkateswarlu, B. et al. (eds) Crop stress and its management: perspectives and strategies. pp. 261-315. Springer Science+Business Media B.V.
Hu, J.Z., Pei, D.L., Liang, F., Shi, G.X. 2009. Growth responses of Sagittaria sagittifolia L. plants to water contamination with cadmium. Russian Journal of Plant Physiology. 56 (5): 686-694.
Iannone, M.F., Rosales, E.P., Groppa, M.D., Benavides, M.P. 2010. Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma. 245: 15-27. Januškaitienė, I. 2014. The dynamics of photosynthetic parameters of Phaseolus vulgaris and Vicia fabo under strong cadmium stress. Biologija. 60 (3): 155-164.
Liu, H., Zhang, C., Wang, J., Zhou, C., Feng, H., Mahajan, M.D., Han, X. 2017. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars. Chemosphere. 171: 240-247.
Lopez-Millan, A.F., Sagardoy, R., Solanas, M., Abadia, A., Abadia, J. 2009. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environmental and Experimental Botany. 65: 376-385.
Lu, Y., Li, X., He, M., Zhao, X., Liu, Y., Cui, Y., Pan, Y., Tan, H. 2010. Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiologiae Plantarum. 32: 538-590.
Muradoglu, F., Gundogdu, M., Ercisli, S., Enuc, T., Balta, F., Jaafar H.Z.E. 2015. Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry. Biological Research. 48: 11.
Nadgorska-Socha, A., Kafel, A., Kandziora-Ciupa, M., Gospodarek, J., Zawisza-Raszka, A. 2013. Accumulation of heavy metals and antioxidant responses in Vicia faba plants grown on monometallic contaminated soil. Environmental Science Pollution Research. 20: 1124-1134.
Nakano, Y., Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. Plant and Cell Physiology. 22: 867-880.
Namdjoyan, S.H., Khavari-Nejad, R.A., Bernard, F., Nejadsattari, T., Shaker, H. 2011. Antioxidant defense mechanisms in response to cadmium treatment in two safflower cultivars. Russian Journal Plant Physiology. 58 (3): 467-477.
Nogueirol, C.R., Monteiro, F.A., Gratao, P.L., de Alcantara da Silva, B.K., Azevedo, R.A. 2016. Cadmium application in tomato: nutritional imbalance and oxidative stress. Water Air and Soil Pollution, 227:210.
Nouairi, I., Ammar, W.B., Youssef, N.B., Miled, D.D.B., Ghorbal, M.H., Zarrouk, M. 2009. Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiologiae Plantarum. 31: 237-247.
Rahoui, S., Ben, C., Chaoui, A., Martinez, Y., Yamchi, A., Richauer, M., Gentzbittel, L., El Ferjani, E. 2014. Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environmental Science Pollution Research. 21: 8070 8083.
Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Del Campo, F.F., Hernández, L.E. 2006. Stress Responses of Zea mays to Cadmium and Mercury. Plant and Soil. 279:41-50.
Romero-Puertas, M.C., Terron-Camero, L.C., Pelaez-Vico, M.A., Olmedilla, A., Sandalio, L.M. 2019. Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environmental Experimental Botany. 161: 107-199.
Roychoudhury, A., Basu, S., Sengupta, D.N. 2012. Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiologiae Plantarum. 34: 835-847.
Sanita-Toppi, L. Gabbrielli, R. 1999. Response to cadmium in higher plants, Environmental and Experimental Botany. 41: 105-130.
Shahid, M., Pourrut, B., Dumat, C., Nadeem, M., Aslam, M., Pinelli, E. 2014. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. In: Whitacre, D.M. et al. (eds) Reviews of Environmental Contamination and Toxicology. pp 1-44. Springer International Publishing Switzerland.
Sharma, J., Chakraverty, N. 2013. Mechanism of plant tolerance in response to heavy metals. In: Rout, G.R., Das, A.B. (eds) Molecular Stress Physiology of Plants. pp. 289-308. New Delhi, India: Springer.
Souza, L.A., Piotto, F.A., Dourado, M.N., Schmidt, D., Franco, M.R., Boaretto, L.F., Tezotto, T., Ferrieira, R.R., Azevedo, R.A. 2015. Physiological and biochemical responses of Dolichos lablab L. to cadmium support its potential as a cadmium phytoremediator. Journals of Soils and Sediments. 17 (5): 1413-1426.
Štolfa, I., Pfeiffer, T.Ž., Špoljarić, D., Teklić, T., Lončarić, Z. 2015. Heavy metal induced oxidative stress in plants: response of the antioxidative system. In: Gupta, D.K. et al. (eds) Reactive oxygen species and oxidative damage in plants under stress. pp 127-163. Springer International Publishing Switzerland.
Sytar, O., Kumar, A., Latowski, D., Kucynska, P., Strazałka, K., Prasad, M.N.V. 2013. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum. 35: 985-999.
Wang, C., Tian, Y., Wang, X., Geng, J., Jiang, J., Yu, H., Wang, C. 2010. Lead contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology. 19: 1130-1139.
Wang, H., Zhao, S.C., Liu, R.L., Zhou, W., Jin, J.Y. 2009. Changes of photosynthetic activities of maize (Zea mays L.) seedlings in response to cadmium stress. Photosynthetica. 47 (2): 277-283.
Wang, Y., Feng, H., Qu, Y., Cheng, J., Zhao, Z., Zhang, M., Wang, X., An, L. 2006. The relationship between reactive oxygen species and nitric oxide in ultraviolet-B-induced ethylene production in leaves of maize seedlings. Environmental and Experimental Botany. 57: 51-61.
Xu, X., Liu, C., Zhao, X., Li, R., Deng, W. 2014. Involvement of an antioxidant defense system in the adaptative response to cadmium in maize seedlings (Zea Mays L.). Bulletin of Environmental Contamination and Toxicology. 93: 618-624.
Zayneb, C., Bassem, K., Zeineb, K., Grubb, C.D., Noureddine, D., Hafedh, M., Amine, E. 2015. Physiological responses of fenugreek seedling and plants treated with cadmium. Environmental Science and Pollution Research. 22: 10679-10689.
Gill, S.S., Khan, N.A., Tuteja, N. 2012. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Science. 182:112-120.
Jana, S., Choudhuri, M.A. 1981. Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquatic Botany. 12: 345-354.
Kato, M., Shimizu, S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic dependent peroxidative degradation. Canadian Journal of Botany. 65: 729-735.
Weckx, J.E.J., Clijsters, H.M.M. 1996. Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiology Plantarum. 96: 506-512.
Chaoui, A., Ghorbal, M.H., El Ferjani, E. 1997. Effects of cadmiumzinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Science. 126: 21-28.
Boulila-Zoghlami, L., Djebali, W., Chaibi, W., Ghorbel, M.H. 2006. Modifications physiologiques et structurales induites par l’interaction cadmium–calcium chez la tomate (Lycopersicon esculentum). Comptes Rendus Biologies. 329: 702-711.
Lin, R., Wang, X., Luo, Y., Du, W., Guo, H., Yin, D. 2007. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings (Triticum aestivum L.). Chemosphere. 69:89-98.
Ammar, W.B., Nouairi, I., Zarrouk, M., Ghorbel, M.H., Jemal F. 2008. Antioxidative response to cadmium in roots and leaves of tomato plants. Biologia Plantarum. 54 (4): 727-731.
Chamseddine, M., Wided, B.A., Guy, H., Marie-Edith C., Fatma J. 2009. Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regulation. 57: 89-99.
Gao, Y., Zhou, P., Mao, L., Shi, W.J., Zhi, Y.E. 2010. Phytoextraction of Cadmium and Physiological Changes in Solanum nigrum as a Novel Cadmium Hyperaccumulator. Russian Journal of Plant Physiology. 57 (4): 501-508.
Anjum, N.A., Umar, S., Iqbal, M., Khan, N.A. 2011. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russian Journal of Plant Physiology. 58 (1): 92- 99.
Lou, H., Li, H., Zhang, X., Fu, J. 2011. Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology. 20: 770-778.
Alfadul, S.M., Al-Fredan, M.A.A. 2013. Effects of Cd, Cu, Pb and Zn combinations on Phragmites australis metabolism, metal accumulation and distribution. Arabian Journal for Science and Engineering. 38: 11-19.
Daud, M.K., Ali, S., Variath, M.T., Zhu, S.J. 2013. Differential physiological, ultramorphological and metabolic responses of cotton cultivars under cadmium stress. Chemosphere. 93: 2593-2602.
Daud, M.K., Quiling, H., Lei, M., Ali, B., Zhu, S.J. 2015. Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere. 120: 309-320.
Mandal, C., Ghosh, N., Dey, N., Adak, M.K., Banerjee S. 2015. Changes in physiological responses of Hygrophila schulli under cadmium toxicity. Agricultural Research. 4 (2): 171-182.
Markovska, Y.K., Gorinova, N.I., Nedkovska, M.P., Miteva, K.M. 2009. Cadmium-induced oxidative damage and antioxidant responses in Brassica juncea plants. Biologia Plantarum. 53 (1): 151-154.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)