Evaluación de los efectos sinérgicos de cromo y plomo durante el proceso de fitorremediación con berro (Nasturtium officinale) en un humedal artificial//Evaluation of the synergistic effects of chromium and lead during the process of phytoremediation with watercress (Nasturtium officinale) in an artificial wetland
DOI:
https://doi.org/10.18633/biotecnia.v22i2.1259Palabras clave:
Rizofiltración, Humedal artificial, Índice de tolerancia, Factor de bioconcentración, Factor de TraslocaciónResumen
La contaminación por metales pesados ha aumentado con los años debido a sus diferentes aplicaciones. Se han evaluado distintas especies vegetales para bioacumular metales pesados, el berro es una especie con capacidad de fitorremediación. Sin embargo, falta información sobre la sinergia que ocurre cuando dos metales en el medio están presentes y condicionan su acumulación en las plantas. El objetivo de esta investigación fue evaluar el efecto sinérgico en la acumulación simultánea de Pb y Cr (VI) en berro. Se utilizó un sistema cerrado y un humedal artificial para evaluar el comportamiento de los metales en presencia de berro, cuantificando al final de cada experimento la concentración acumulada en tallos, hoja y raíz. La mayor concentración de ambos metales fue en raíz (Pb > Cr). Al incrementarse la presencia de Cr (VI) en solución, la planta absorbe más metal, y en combinación con Pb el índice de tolerancia se aumenta y el factor de translocación disminuye. Dentro del humedal construido el porcentaje de remoción de Pb y Cr total fue del >99.9% (100 mg L-1) y 95% (28.5 mg L-1), respectivamente. Los resultados obtenidos indican que existen interacciones ambientales, físicas y químicas que determinan la capacidad de bioacumulación en el berro, de los metales evaluados.
ABSTRACT
Heavy metal pollution has increased over the years due to its different applications. Different plant species have been evaluated to bioaccumulate heavy metals; watercress is a species with phytoremediation capacity. However, there is little information on the synergy that occurs when two metals in the medium are present and condition their accumulation in plants. The objective of this research was to evaluate the synergistic effect on the simultaneous accumulation of Pb and Cr (VI) in watercress. We used a batch system and an artificial wetland to evaluate the behavior of metals in the presence of watercress, quantifying at the end of each experiment the cumulative concentration in stems, leaf, and root. The highest concentration of both metals occurred in the root section (Pb> Cr). As the presence of Cr (VI) in solution increases, the plant absorbs more metal, and combination with Pb the tolerance index is increased and the translocation factor decreases. Within the constructed wetland the percentage of total Pb and Cr removal was >99.9 % (100 mg L-1) and 95% (28.5 mg L-1) respectively. The results show the presence of effects of environmental, physical and chemical interactions that determine the capacity of bioaccumulation of the metals evaluated in watercress.
Descargas
Citas
Adriano, D.C. 2003. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals, Springer, New York.
APHA-AWWA-WEF. 2005. American Public Health Association, American Water Works Association Water Environment Federation, Standard Methods for the Examination of Water and Wasterwater, 21st Edition, Washington, D.C.
Aslan, M., Unlu, M.Y., Turkmen, N. y Yilmaz, Y.Z. 2003. Sorption of cadmium and effects on growth, protein content, and photosynthetic pigment composition of Nasturtium officinale R. Br. and Mentha aquatica L. B. Bulletin of Environmental Contamination and Toxicology. 71(2): 323-329.
ATSDR, Agency for Toxic Substances and Disease Registry. Department of Health and Human Services. Draft toxicological profile for chromium; Draft Toxicological Profile for chromium. Consultado [5 febrero 2020] 2012. Disponible en: https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf.
Azouzi, R., Charef, A., Ayed, L. y Khadhar, S. 2019. Effect of water quality on heavy metal redistribution and mobility in polluted agricultural soils in a semi-arid region. Pedosphere. 29(6): 730-739.
Cordeiro, C., Favas, P.J.C., Pratas, J., Sarkar, S.K. y Venkatachalam, P. 2016. Uranium accumulation in aquatic macrophytes in an uraniferous region: relevance to natural attenuation. Chemosphere. 156: 76-87.
Das, S., Gaswami, S. y Talukdar, A.D. 2014. A study on cadmium phytoremediation potential of water lettuce, Pistia stratiotes L. Bulletin Environmental Contamination Toxicology. 92(2): 169-174.
Devallois, V., Boyer, P., Boudenne, J.L. y Coulomb, B. 2008. Modelling the vertical profiles of O2 and pH in saturated freshwater sediments. International Journal of Limnology. 44(4): 275-288.
Duman, F., Leblebici, Z. y Aksoy A. 2009. Growth and bioaccumulation characteristics of watercress (Nasturtium officinale R. BR.) exposed to cadmium, cobalt and chromium. Chemical Speciation & Bioavailability. 21(4): 257-265.
Duman F. y Ozturk K.F. 2010. Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.). Journal of Environmental Sciences. 22: 526-532.
EPA. United States Environmental Protection Agency. Environmental topic, Lead regulations. Consultado [5 febrero 2020] 2018. Disponible en: https://www.epa.gov/lead/lead-regulations
Favas, P.J.C., Pratas, J., y Prasad, M.N.V. 2012. Accumulation of arsenic bye aquatic plants in large-scale field conditions: opportunities for phytoremediation and bioindication. Science of the Total Environmen. 433: 390-397.
Favas, P.J.C., Pratas, J., Rodrigues, N., D´Souza, R., Varun M. y Paul, M.S. 2018. Metal (loid) accumulation in aquatic plants of a mining area: potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere. 194: 158-170.
Frank, J.J., Poulakos, A.G., Tornero-Velez, R. y Xue, J. 2019. Systematic review and meta-analyses of lead (Pb) concentrations in environmental media (soil, dust, water, food, and air) reported in the United States from 1996 to 2016. Science of the Total Environment. 694: 133489.
Galal, T.M. y Shehata, H.S. 2015. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators. 48: 244-251.
Hellerich, L.A., Nikolaidis, N.P. y Dobbs, G.M. 2008. Evaluation of the potential for the natural attenuation of hexavalent chromium within a sub-wetland ground water. Journal of Environmental Management. 88: 1513-1524.
Huang, K., Lin, L., Chen, F., Liao, M., Wang, J., Tang, Y., Lai, Y., Liang, D., Xia, H., Wang, X., y Ren, W. 2017. Effects of live Myriophyllum aquaticum and its straw on cadmium accumulation in Nasturtium officinale. Environmental Science and Pollution Research. 24: 22503-22509.
Islam, M.S., Saito, T. y Kurasaku, M. 2015. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrasoum: phytotoxicity, uptake kinetics, and mechanism. Ecotoxicology Environmental Safety. 112: 193-200.
Jasrotia, S., Kansal, A. y Mehra, A. 2017. Performance of aquatic plants species for phytoremediation of arseniccontaminated water. Applied Water Science. 7: 889-896.
Jin, R., Liu, Y., Liu, G., Tian, T., Qiao, S. y Zhou, J. 2017. Characterization of product and potential mechanism of Cr (VI) reduction by anaerobic activated sludge in a sequencing batch reactor. Scientific Reports. 7(1): 1681.
Kara, Y. 2005. Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. International Journal of Environmental Science and Technology. 2: 63-67.
Keser, G. y Saygideger, S. 2010. Effects of lead on the activities of antioxidant enzymes in watercress, Nasturtium officinale R. Br. Biological Trace Element Research. 137: 235-243.
Klimek-Szczykutowicz, M., Szopa, A. y Ekiert, H. 2018. Chemical composition, traditional and professional use in medicine, application in environmental protection, position in food and cosmetics industries, and biotechnological studies of Nasturtium officinale (watercress). A review. Fitoterapia. 129: 283-292.
Li, K., Lin, L., Wang, J., Xia, H., Liang, D., Wang, X., Liao, M., Wang, L., Liu, L., Chen, C. y Tang, Y. 2017. Hyperaccumulator straw improves the cadmium phytoextraction efficiency of emergent plant Nasturtium officinale. Environmental Monitoring and Assessment. 189: 374.
Lima, L., Olivares-Rieumont, S., Columbie, I., de la Rosa-Menderos, D. y Gil-Castillo, R. 2005. Niveles de plomo, zinc, cadmio y cobre en el Rio Almendares, Ciudad Habana, Cuba. Revista Internacional de Contaminacion Ambiental. 21(3): 115-124.
Lin, L., Luo, L., Lian, M., Zhang, X. y Yang, D. 2015. Cadmium accumulation characteristics of emerged plant Nasturtium officinale R.BR. Resources and Environment in the Yangtze Basin. 4: 50-60.
Liu, X., Gao, Y., Khan, S., Duan, G., Chen, A., Ling, L., Zhao, L., Liu, Z. y Wu, X. 2008. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan. Journal of Environmental Sciences. 20(12): 1469-1474.
Liu, L., Wang, S., Guo, X. y Wang, H. 2019. Comparison of the effects of different maturity composts on soil nutrient, plant growth and heavy metal mobility in the contaminated soil. Journal of Environmental Management. 250:109525.
López-Luna, J., González-Chávez, M.C., Esparza-García, F.J. y Rodríguez-Vázquez, R. 2009. Toxicity assessment of soil amended with tannery sludge, trivalent chromium and hexavalente chromium, using wheat, oat and sorghum plants. Journal of Hazardous Materials. 163(2-3): 829-834.
Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G. y de Sostoa, A. 2013. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Science of the Total Environment. 449: 9-19.
Marchand, L., Mench, M., Jacob, D.L. y Otte, M.L. 2010. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environmental Pollution. 158(12): 3447-3461.
Naiya, T.K., Bhattacharya, A.K., Mandal, S. y Das, S.K. 2009. The sorption of lead (II) ions on rice husk ash. Journal of Hazardous Materials.163: 1254-1264.
Ng, C.C., Rahman, M.M., Boyce, A.N. y Abas, M.R. 2016. Heavy metals phyto-assessment in commonly grown vegetables: water spinach (I. aquatic) and okra (A. esculentus). Springer Plus. (5)1: 469-477.
Olmos-Márquez, M.A., Alarcón-Herrera, M.T. y Martin-Domínguez, I.R. 2012. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Environmental Science and Pollution Research. 19(3): 763-771.
Ovecka, M. y Takac, T. 2014. Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances. 32: 73-86.
Ozturk, F., Duman, F., Leblebici, Z. y Temizgul R. 2010. Arsenic accumulation and biological responses of watercress (Nasturtium officinale R. Br.) exposed to arsenite. Environmental and Experimental Botany. 69(2): 167-174.
Pawlisz, A.V., Kent, R.A., Schneider, U.A y Jefferson, C. 1997. Canadian water quality guidelines for chromium. Environmental Toxicology and Water Quality.1282: 123-183.
Pedescoll, A., Sidrach-Cardona, R., Hijosa-Valsero, M. y Becares E. 2015. Design parameters affecting metals removal in horizontal constructed wetlands for domestic wastewater treatment. Ecological Engineering. 80: 92-99.
Picco, P., Hasuoka, P., Verni, E., Savio, M. y Pacheco, P. 2019. Arsenic species uptake and translocation in Elodea canadensis. International Journal of Phytoremediation. 21(7): 693-698.
Rascio, N. y Naviri-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?. Plant Science. 180(2): 169-181.
Ribeiro de Souza, S.R., Lopez de Andrade, S.A., Anjos de Souza, L. y Aparecida, M. 2012. Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. Journal of Environmental Management. 110: 299-307.
Rose, P., Huang, Q., Ong, C.N. y Whiteman, M. 2005. Broccoli and watercress suppress matrix metalloproteinase-9 activity and invasiveness of human MDA-MB-231 breast cancer cells. Toxicology and Applied Pharmacology. 209(2): 105-113.
Saygideger, S. y Dogan, M. 2005. Influence of pH on lead uptake, chlorophyll and nitrogen content of Nasturtium officinale R. Br. and Mentha aquatica L. Journal of Environmental Biology. 26(4): 753-759.
Seth, C.S. 2011. A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Botanical Review. 78(1): 32-62.
Shi, X., Zhang, X., Chen, G., Chen, Y., Wang, L. y Shan, X. 2011. Seedling growth and metal accumulation of selected woody species in copper and lead/zinc mine tailings. Journal of Environmental Sciences. 23(2): 266-274.
Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P. K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R.D. y Tuli, R. 2009. Effect of arsenic on growth oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology Environmental Safety. 72(4): 1102-1110.
Souza, T.D., Borges, A. C., Matos, A.T., Veloso, R.W. y Braga, A.F. 2018. Kinetics of arsenic absorption bye the species Eichhornia crassipes and Lemna valdiviana under optimized conditions. Chemosphere. 209: 866-874.
Vidal de Campos, F., Alves de Oliveira, J., Alves da Silva, A., Ribeiro, C. y dos Santos F. 2019. Phytoremediation of arsenite-contaminated environments: is Pistia stratiotes L. a useful tool?. Ecological Indicators. 104: 794-801.
Wang, Z., Liu, X. y Qin, H. 2019. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. Journal of Geochemical Exploration. 200: 159-166.
Yadav, A.K., Abbassi, R., Kumar, N., Satya, S., Sreekrishnan, T.R. y Mishra, B.K. 2012. The removal of heavy metals in wetland microcosms: Effects of bed depth, plant species, and metal mobility. Chemical Engineering Journal. 211-212: 501-507.
Yadav, A.K., Kumar, N., Sreekrishnan, T.R., Santosh, S. y Bishnoi, N.R. 2010. Removal of chromium and nickel from aqueous solution in constructed wetland: Mass balance, adsorption– desorption and FTIR study. Chemical Engineering Journal. 160: 122-128.
Ye, S., Laws, E.A. y Gambrell, R. 2013. Trace element remobilization following the resuspension of sediments under controlled redox conditions: City Park Lake, Baton Rouge, LA. Applied Geochemistry. 28: 91-99.
Zurayk, R., Sukkariyah, B., y Baalbaki, R. 2001a. Common hydrophytes as bioindicators of nickel, chromium and cadmium pollution. Water Air and Soil Pollution. 127: 373-388.
Zurayk, R., Sukkariyah, B., Baalbaki R. y Ghanem, D.A. 2001b. Chromium phytoaccumulation from Solution by Selected Hydrophytes. International Journal of Phytoremediation. 3: 335-350.
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)