Estudio de actividad antibacteriana y toxicidad aguda de extracto acuoso estandarizado de fruto de Randia monantha Benth

Autores/as

  • Naida Juárez-Trujillo
  • Fredy Erubiel Tapia-Hernández
  • Mayvi Alvarado-Olivarez
  • César Ignacio Beristain-Guevara
  • Luz Alicia Pascual-Pineda
  • Maribel Jiménez Fernández Universidad Veracruzana

DOI:

https://doi.org/10.18633/biotecnia.v24i1.1516

Palabras clave:

Toxicidad aguda, propiedades antimicrobianas, crucetillo, Randia monantha, ratas

Resumen

El fruto de Randia monantha se utiliza tradicional y empíricamente en la preparación de una bebida como antiveneno y para el tratamiento de diversas enfermedades, pero hasta la fecha existe poca evidencia científica sobre sus propiedades antimicrobiológicas y toxicidad. El objetivo de este estudio fue evaluar el efecto de la administración del extracto acuoso de pulpa de Randia monantha sobre la toxicidad aguda en ratas Wistar macho y evaluar la actividad antimicrobiana a diferentes concentraciones frente a bacterias patógenas. Los resultados de la toxicidad oral aguda no revelaron muertes en dosis de hasta 5000 mg / kg de peso corporal. Los animales de experimentación no mostraron cambios significativos en los parámetros de peso y comportamiento evaluados con respecto al tratamiento control. Las ratas no mostraron cambios significativos en los parámetros hematológicos, pero las ratas con dosis de 5000 mg / kg de peso corporal mostraron la aparición de manchas amarillas en el riñón. El extracto acuoso no mostró actividad antimicrobiana contra las bacterias patógenas de prueba. Estos resultados sugieren que el extracto acuoso de la fruta Randia monantha puede usarse con cierto grado de seguridad por administración oral, pero no debe tomarse en dosis altas.

Citas

Alamin, M.A., Yagi, A.I. and Yagi, S.M. 2015. Evaluation of antidiabetic activity of plant used in Waster Sudan. Asian Pacific Journal of Tropical Biomedicine. 5(5): 395-402.

Balouri M., Sadiki M. and Koraichi I.S. 2016. Methods for in vitro evaluation antimicrobial activity: a review. Journal of Pharmaceutical Analysis. 6: 71-79.

Cano-Campos M., Díaz S., Uribe M., López G., Montes J., Paredes O. and Delgado F. 2011. Bio-guided fractionation of the antimutagenic activity of methanolic extract from the fruit of Randia echinocarpa (Sessé et Mociño) against 1-nitropyrene. Food Research International. 44: 2087-3093.

Cavanaugh, B. 2003. Nurse’s Manual of Laboratory and Diagnostic Tests. FA Davis Company, Philadelphia.

Coggeshall, E. 1992. A consideration of neural counting methods. Agosto 2019, de Biomedical Institute.

Dantas, J.A., Ambiel, C.R., Cuman, R.K.N., Baroni1, S. and Bersani-Amado, C.A. 2006. Valores de referência de alguns parâmetros fisiológicos de ratos do biotério Central da Universidade Estadual de Maringá, Estado do Paraná. Acta Scientiarum Health Science. 28: 165–170.

Ezeonwumelu, J., Julius, A., Muhoho, C., Ajayi, A., Oyewale, A.and Tanayen, J. 2011. Biochemical and histological studies of aqueous extract of Bidens pilosa leaves from Ugandan Rift Valley in rats. British Journal of Pharmacology and Toxicology. 2: 302–209.

Gallardo-Casas, Guevara-Balcázar, G., Morales-Ramos, E., Tadeo-Jiménez Y., Gutiérrez Flores, O., Jiménez-Sánchez, N., Valadez-Omaña, M.T. and Castillo-Hernández, M.C. 2012. Ethnobotanic study of Randia aculeata (Rubiaceae) in Jamapa, Veracruz, Mexico, and its anti-snake venom effects on mouse tissue. El Diario de Animales Venenosos y las Toxinas Incluyendo Enfermedades Tropicales. 3(18): 287-294.

García-Cruz, N. 2018. Obtaining extracts from the fruit of “crucetillo” (Randia aculeate) and evaluating its effects on the growth of Microbacterium bovis. Thesis, Universidad Autónoma de México.

Hodge, A. and Sterner, B. 2005. Toxicity Classes. In: Canadian Center for Occupational Health and Safety. http://www.ccohs.ca/oshanswers/chemicals/id50.htm

Jo, J., Choi, M.Y. and Koh, D.S. 2007. Size distribution of mause Langerhans islets. Biophysical Journal. 893: 2655-2666.

Juárez-Trujillo, N., Monribot, J., Alvarado, M., Luna, G. and Jiménez M. 2018. Phenolic profile and antioxidative properties of pulp and seeds of Randia monantha Benth. Industrial Crops and Products. 24: 53-58.

Kandimalla, R., Kalita, S., Saikia, B., Choudhury, B., Singh, Y., Kalita, K., Dash, S. and Kotoky, J. 2016. Antioxidant and hepatoprotective potentiality of Randia dumetorum Lam. leaf and bark via inhibition of oxidative stress and inflammatory cytokines. Frontiers in Pharmacology. 7: 205.

Kumar, V.P., Chauhan, N.S., Padh, H. and Rajani, M. 2006. Search for antibacterial and antifungal agents from selected Indian medicinal plants. Journal of Ethnopharmacology. 107(2): 182-188.

Lapchik, V.B.V., Mattaraia, V.G.M. and Ko, G.M. 2017. Cuidados e Manejo de Animais de Laboratório, 2a. ed. Atheneu.

Lapikanon, P., Tovivich, P., Woo, W.S. and Choi, J.S. 1983. Phytochemical study on Randia siamensis. Archives of Pharmacal Research. 6(1): 29–33.

Levetan, C. 2010. Distinctions between islet neogenesis and b-cell replication: Implications for reversal of Type 1 and 2 diabetes. Journal of Diabetes. 2: 76–84.

Meilian, Y., Zihuan, W., Yudan, W., Guoyin, K., Guy, S. and Shengbao, C. 2019. Acute and subacute toxicity evaluation of ethanol extract from aerial parts of Epigynum auritum in mice. Food Chemistry and Toxicology. 131: 110534

Méndez, L.M. and Hernández, M.R. 2009. Evaluación de la toxicidad del fruto de Randia monantha Benth. Revista Medica de la Universidad Veracruzana. 9(S1): 42–45.

Monammadi, J. and Naik, P.R. 2012. The histopathologic effects of Morus alba leaf extract on the pancreas of diabetic rats. Turkish Journal of Biology. 36: 211-216.

Nagamma, T., Konuri, A., Nayak, C.D., Kamath, S.U., Udupa, P.E.G. and Nayak, Y. 2019. Dose-dependent effects of fenugreek seed extract on the biochemical and hematological parameters in high-fat diet-fed rats. Journal of Taibah University Medical Sciences. 14, (4): 383-389.

Nna, V.U., Bakar, A.B., Md Lazin, M.R.M.L.and Mohamed, M. (2018). Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin–induced diabetic rats. Food Chemistry and Toxicology. 120: 305-320.

OECD. (2001). “Guidelines for the testing of chemicals / section 4: Health effects test no. 423: Acute oral toxicity - Acute toxic class method,” Organization for Economic Cooperation and Development, Paris, France.

Othmen, K.B., Elfalleh, W. García-Beltrán, J.M., Esteban, M.A.and Haddad, M. 2020. An in vitro of the effect of carob (ceratonia siliqua L.) leaf extract on gilthead seabream (Sparus aurata L.) leucocyte activities. Antioxidant, cytotoxic and bactericidal properties. Fish and Shellfish Immunology. 99: 35-43.

Pérez, S. 2017. Toxicidad por administración contínua (90 días) del extracto clorofórmico de Calea urticifolia (juanislama) en ratones de laboratorio. (Tesis de licenciatura). Universidad del Salvador.

Saleen, U., Amin, S., Ahmad, B., Azeem, H., Anwar, F. and Mary, S. 2017. Acute oral toxicity evaluation of aqueous ethanolic extract of Saccharum munja Roxb. Roots in albino mice as per OECD 425 TG. Toxicology Reports. 4: 580-585.

Sellers, R.S., Morton, D., Michael, B., Roome, N., Johnson, J.K., Yano, B.L., Perry, R. and Schafer, K. 2007. Society of toxicologic pathology position paper: organ weight recommendations for toxicology studies. Toxicology Pathology. 35: 751–755.

Tasić, T., Lozić, M., Glumac, S., Stanković, M., Milovanovich, I., Djordjevich, D.M., Trbovich, A.M., Japundžić-Žigon, N. and De Luka, S.R. 2021. Static magnetic field on behavior, hematological parameters and organ damage in spontaneously hypertensive rats. Ecotoxicology and Environmental Safety. 207: 111085.

Teo, S., Stirling, D., Thomas, S., Hoberman, A., Kiorpes, A. and Khetani, V. 2002. A 90-day oral gavage toxicity study of d-methylphenidate and d, l-methylphenidate in Sprague Dawley rats. Toxicology Journal. 179 (3): 183-196.

Umale, S., Deck, C., Bourdet, N., Dhumane, P., Soler, L., Marescaux, J. and Willinger, R. 2013. Experimental mechanical characterization of abdominal organs: liver, kidney & spleen. Journal of Mechanical Behavior of Biomedical Materials. 17: 22–33.

Descargas

Publicado

2022-02-23

Número

Sección

Artículos