PERSPECTIVAS ACTUALES DEL USO DE PROTEÍNAS RECOMBINANTES Y SU IMPORTANCIA EN LA INVESTIGACIÓN CIENTÍFICA E INDUSTRIAL
DOI:
https://doi.org/10.18633/bt.v15i3.152Palabras clave:
Proteínas recombinantes, sobreexpresión heteróloga, plásmidos, biofármacos, sobreexpresión de proteínasResumen
El descubrimiento de la estructura y el mecanismo de replicación del ADN han permitido el desarrollo de técnicas biomoleculares para su manipulación, gracias a estos avances es posible sintetizar proteínas en organismos en los que no se encuentran de manera natural (sobreexpresión heteróloga). A las proteínas producidas de esta manera se les conoce como proteínas recombinantes (PR). Las PR se pueden producir en una gran variedad de sistemas biológicos, como bacterias, levaduras y hasta células eucariontes. Comercialmente están disponibles un gran numero de sistemas de expresión y uno de los más utilizados es el sistema basado en la ARN polimerasa del fago T7. Las PR pueden tener características estructurales y funcionales muy similares a las proteínas naturales y por lo general se producen con alta eficiencia. Sin embargo, algunas PR no son funcionales o sufren problemas de plegamiento cuando se expresan en células procariontes, formando agregados moleculares que se conocen como cuerpos de inclusión. La coexpresión con otras proteínas, como las chaperonas o el uso de cepas modificadas para la sobreexpresión, son algunas de las estrategias utilizadas para evitar la formación de agregados. A pesar de estas limitantes, la tecnología de PR es ampliamente utilizada en investigación y en la industria farmacéutica y alimentaria. Esta revisión tratará sobre los principales aspectos del proceso de producción de PR y sus aplicaciones.Descargas
Citas
Acton, T. B., Gunsalus, K. C., Xiao, R., Ma, L. C., Aramini, J., Baran, M. C., Chiang, Y. W., Climent, T., Cooper, B. y Denissova, N. G. 2005. Robotic cloning and protein production platform of the Northeast Structural Genomics Consortium. Methods in Enzymology. 394:210-243.
Ahmad, A., Pereira, E. O., Conley, A. J., Richman, A. S. y Menassa, R. 2010. Green Biofactories: Recombinant Protein Production in Plants. Recent Patents on Biotechnology 4:242-259.
Arvizu-Flores, A. A., Aispuro-Hernandez, E., Garcia-Orozco, K. D., Varela-Romero, A., Valenzuela-Soto, E., Velazquez-Contreras, E. F., Rojo-Dominguez, A., Yepiz-Plascencia, G., Maley, F. y Sotelo-Mundo, R. R. 2009. Functional identity of the active sites of crustacean and viral thymidylate synthases. Comparative Biochemistry and Physiology Part C 150:406-13.
Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology. 10:411-21.
Baneyx, F. y Mujacic, M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology. 22:1399-408.
Barron, N., Piskareva, O. y Muniyappa, M. 2007. Targeted genetic modification of cell lines for recombinant protein production. Cytotechnology. 53:65-73.
Barta A., Sommergruber, K., Thompson, D., Hartmuth, K., M.A., M. y Matzke, A. J. M. 1986. The expression of a nopaline synthase-human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology. 6;347-357.
Basile, G. y Peticca, M. 2009. Recombinant protein expression in Leishmania tarentolae. Molecular Biotechnoloogy. 43:273-8.
Boyer, L. V., Theodorou, A. A., Berg, R. A., Mallie, J., Chavez-Mendez, A., Garcia-Ubbelohde, W., Hardiman, S. y Alagon, A. 2009. Antivenom for critically ill children with neurotoxicity from scorpion stings. New England Journal of Medicine. 360:2090-2098.
Casasola, A., Ramos-Cerrillo, B., De Roodt, A. R., Carbajal Saucedo, A., Chippaux, J. P., Alagon, A. y Stock, R. P. 2009. Paraspecific neutralization of the venom of African species of cobra by an equine antiserum against Naja melanoleuca: a comparative study. Toxicon. 53:602-608.
Changchien, L. M., Garibian, A., Frasca, V., Lobo, A., Maley, G. F. y Maley, F. 2000. High-level expression of Escherichia coli and Bacillus subtilis thymidylate synthases. Protein Expression and Purification. 19:265-270.
Cregg, J. M., Cereghino, J. L., Shi, J. y Higgins, D. R. 2000. Recombinant protein expression in Pichia pastoris. Molecular Biotechnology. 16:23-52.
De-La-Re-Vega, E., Garcia-Orozco, K. D., Calderon-Arredondo, S. A., Romo-Figueroa, M. G., Islas-Osuna, M. A., Yepiz-Plascencia, G. M. y Sotelo-Mundo, R. R. 2004. Recombinant expression of marine shrimp lysozyme in Escherichia coli. Electronic Journal of Biotechnology. 7:298-304.
Deuerling, E. y Bukau, B. 2004. Chaperone-assisted folding of newly synthesized proteins in the cytosol. Critical Reviews in Biochemistry and Molecular Biology. 39:261-277.
Eiteman, M. A. &yAltman, E. 2006. Overcoming acetate in Escherichia coli recombinant protein fermentations. TRENDS in Biotechnology, 24, 530-536.
Farrokhi, N., Hrmova, M., Burton, R. A. & Fincher G. B. 2009. Heterologous and Cell Free Protein Expression Systems. Methods in Molecular Biology. 513:175-198.
Geisse, S. & Fux, C. 2009. Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol, 463, 223-38.
Genomics:-Gtl-Roadmap. 2005. Protein production and characterization. Revew of the Department of Energy Genomics:GTL Program. Washington D.C.
Gräslund, S., Nordlund, P., Weigelt, J., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R. y Ming, J. 2008. Protein production and purification. Nature Methods. 5:135-146.
Guevara-Hernandez, E., Garcia-Orozco, K. D. y Sotelo-Mundo, R. R. 2012. Biochemical Characterization of Thymidine Monophosphate Kinase from white Spot Syndrome Virus: A Functional Domain from the Viral ORF454. Protein and Peptide Letters. 19:1220-1224.
He, Z. M., Jiang, X. L., Qi, Y. y Luo, D. Q. 2008. Assessment of the utility of the tomato fruit-specific E8 promoter for driving vaccine antigen expression. Genetica. 133:207-214.
Holmes, W. J., Darby, R. A., Wilks, M. D., Smith, R. y Bill, R. M. 2009. Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microbial Cell Factory. 8-35.
Huang , T. K. y Mcdonald, K. A. 2009. Bioreactor Engineering for Recombinant Protein Production in Plant Cell Suspension Cultures. Biochemical Engineering Journal. 45:168-184.
Jamal, A., Ko, K., Kim, H. S., Choo, Y. K. y Joung, H. 2009. Role of genetic factors and environmental conditions in recombinant protein production for molecular farming. Biotechnology Advances. 27:914-923.
Jonasson, P., Liljeqvist, S., Nygren, P. A. y Stahl, S. 2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnology and Applied Biochemistry. 35:91-105.
Kost, T. A., Condreay, J. P. y Jarvis, D. L. 2005. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotechnology. 2:567-75.
Lau, O. S. y Sun, S. S. 2009. Plant seeds as bioreactors for recombinant protein production. Biotechnol Advances. 27:1015-22.
Lesley, S. A. y Wilson, I. A. 2005. Protein production and crystallization at the joint center for structural genomics. Journal of Structural and Functional Genomics. 6:71-79.
Martinez-Alonso, M., Garcia-Fruitos, E., Ferrer-Miralles, N., Rinas, U. y Villaverde, A. 2010. Side effects of chaperone gene co-expression in recombinant protein production. Microbial Cell Factories. 9:64.
Mathews, C. K. 1999. Biochemistry. Upper Saddle River, NJ, USA, Prentice Hall.
Mattanovich, D., Gasser, B., Hohenblum, H. y Sauer, M. 2004. Stress in recombinant protein producing yeasts. Jorunal of Biotechnology. 113:121-135.
Mcallister, W. T. y Raskin, C. A. 1993. The phage RNA polymerases are related to DNA polymerases and reverse transcriptases. Molecular Microbiology. 10:1-6.
Miao, Y., Ding, Y., Sun, Q. Y., Xu, Z. F. y Jiang, L. 2008. Plant bioreactors for pharmaceuticals. Biotechnology and Genetetic Engineering Reviews. 25:363-380.
Morello, E., Bermudez-Humaran, L. G., Llull, D., Sole, V., Miraglio, N., Langella, P. y Poquet, I. 2008. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. Journal of Molecular Microbiology and Biotechnology. 14:48-58.
Nijland, R. y Kuipers, O. P. 2008. Optimization of protein secretion by Bacillus subtilis. Recent Patents on Biotechnology. 2:79-87.
Oker-Blom, C. y Vuento, M. 2003. Reconstitution of recombinant viral envelope proteins. Methods in Enzymology, 372, 418-28.
Palomares, L. A., Estrada-Mondaca, S. y Ramírez, O. T. 2004. Production of recombinant proteins: challenges and solutions. Methods in Molecular Biology. 267:15-52.
Perrière, G., Bessières, P. y Labedan, B. 1999. The Enhanced Microbial Genomes Library. Nucleic Acids Research. 27:63.
Porro, D., Sauer, M., Branduardi, P. y Mattanovich, D. 2005. Recombinant protein production in yeasts. Molecular Biotechnology. 31:245-259.
Quintero-Reyes, I., Garcia-Orozco, K., Sugich-Miranda, R., Arvizu-Flores, A., Velazquez-Contreras, E., Castillo-Yañez, F. y Sotelo-Mundo, R. 2012. Shrimp oncoprotein nm23 is a functional nucleoside diphosphate kinase. Journal of Bioenergetics and Biomembranes. 44:325-331.
Rader, R. A. 2008. Expression Systems for Process and Product Improvement: A Perspective on Opportunities for Innovator and Follow-On Product Developers. BioProcess International. 6:S4-S9.
Salazar-Medina, A. J., Garcia-Rico, L., Garcia-Orozco, K. D., Valenzuela-Soto, E., Contreras-Vergara, C. A., Arreola, R., Arvizu-Flores, A. y Sotelo-Mundo, R. R. 2010. Inhibition by Cu2+ and Cd2+ of a mu-class glutathione S-transferase from shrimp Litopenaeus vannamei. Journal of Biochemical and Molecular Toxicology. 24:218-222.
Sevastsyanovich, Y. R., Alfasi, S. N. & Cole, J. A. 2010. Sense and nonsense from a systems biology approach to microbial recombinant protein production. Biotechnol Appl Biochem, 55, 9-28.
Shokri, A., Sanden, A. M. y Larsson, G. 2003. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Applied Microbiology and Biotechnology. 60:654-64.
Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. y Kucherlapati, R. S. 1985. Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature. 317:230-234.
Studier, F. W. y Moffatt, B. A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of Molecular Biology. 189113-30.
Studier, F. W., Rosenberg, A. H., Dunn, J. J. y Dubendorff, J. W. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology. 185:60-89.
Terpe, K. 2003. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology. 6:523-33.
Tunitskaya, V. L. y Kochetkov, S. N. 2002. Structural-functional analysis of bacteriophage T7 RNA polymerase. Biochemistry (Moscu). 67:1124-1135.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)