Morfología de nanopartículas de óxido de zinc modifica la germinación y el crecimiento temprano de plántulas de pimiento morrón

Morfología de nanopartículas de óxido de zinc

Autores/as

  • G Magdaleno García Doctorado en Ciencias en Agricultura Protegida, Departamento de Horticultura
  • A Juárez Maldonado Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, México.
  • R Betancourt Galindo Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila, México
  • S González Morales Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahui-la, México
  • M Cabrera de la Fuente Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahui-la, México
  • M Sánchez Vega Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, México
  • A Mendez Universidad Autónoma Agraria Antonio Narro https://orcid.org/0000-0002-4356-0409

DOI:

https://doi.org/10.18633/biotecnia.v25i3.1908

Palabras clave:

Nanopartículas, morfología, zinc, cebado de semillas, pimiento

Resumen

En los últimos años, ha aumentado el interés por el uso de nutrientes y bioestimulantes a nanoescala en la agricultura para mejorar la germinación de semillas y la productividad de los cultivos. El cebado de semillas con nanopartículas ha mejorado el crecimiento y la calidad en cultivos de valor agrícola. El siguiente estudio muestra el efecto del cebado de semillas de pimiento morrón RZ F1 (35-71) con nanopartículas de óxido de zinc (ZnO NPs) con diferente morfología: esférica y hexagonal. Las semillas de pimiento fueron cebadas con ZnO NPs a diferentes dosis, 50 y 100 mg L-1. El estudio se llevó a cabo en dos fases. La primera fase consistió en un estudio in vitro en cámara de germinación (28°C), donde se evaluaron variables de crecimiento temprano: porcentaje de germinación, longitud de radícula, plúmula e hipocótilo; mientras que la segunda fase se realizó en condiciones de invernadero, donde se evaluaron variables como altura de planta, diámetro de tallo, peso seco, área foliar, clorofila total y fenoles, a los 45 días de la siembra. El cebado de semillas con NPs de ZnO de diferente morfología mostró una influencia positiva, siendo la dosis de 100 mg L-1 la que dio los mejores resultados para los parámetros de crecimiento temprano, así como para la altura de la planta, el diámetro del tallo, el área foliar, la clorofila total y el contenido fenólico. Estos resultados sugieren que las NPs de ZnO pueden considerarse un preparador de semillas prometedor para mejorar la germinación, los parámetros de crecimiento temprano y el contenido de clorofila y fenoles.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

G Magdaleno García, Doctorado en Ciencias en Agricultura Protegida, Departamento de Horticultura

Estudiante de Doctorado en Cuencias en Agricultura Protegida

Departamento de Horticultura

Universidad Autónoma Agraria Antonio Narro

A Juárez Maldonado, Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, México.

Profesor Investigador 

Departamento de Botánica

R Betancourt Galindo, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo 25294, Coahuila, México

Investigadora Titular

Centro de Investigación en Química Aplicada

S González Morales, Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahui-la, México

Investigadora Catedratica 

CONACYT- Universidad Autónoma Agraria Antonio Narro

M Cabrera de la Fuente, Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahui-la, México

Profesor Investigador 

Universidad Autónoma Agraria Antonio Narro

M Sánchez Vega, Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Saltillo 25315, Coahuila, México

Investigadora Catedrática

CONACYT-Universidad Autónoma Agraria Antonio Narro

Citas

Abou-Zeid, H. and Ismail. G. 2018. The role of priming with biosynthesized silver nanoparticles in the response of Triticum aestivum L. to salt stress. Egyptian Journal of Botany, 58(1), 73–85. https://doi.org/10.21608/ejbo.2017.1873.1128 DOI: https://doi.org/10.21608/ejbo.2017.1873.1128

Abramenko, N.B., Demidova, T.B., Abkhalimov, Е.V., Ershov, B.G., Krysanov, E.Y. and Kustov. L.M. 2018. Ecotoxicity of different-shaped silver nanoparticles: Case of zebrafish embryos. Journal of Hazardous Materials, 347, 89–94. https://doi.org/10.1016/j.jhazmat.2017.12.060 DOI: https://doi.org/10.1016/j.jhazmat.2017.12.060

Agnihotri, S., Mukherji, S. and Mukherji. S. 2014. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Advances, 4(8), 3974–3983. https://doi.org/10.1039/c3ra44507k DOI: https://doi.org/10.1039/C3RA44507K

Aguilar-Tapia, A. and Zanella. R. 2018. Las nanopartículas bimetálicas y algunas de sus aplicaciones. Mundo Nano. Revista Interdisciplinaria En Nanociencia y Nanotecnología, 10(19), 72. https://doi.org/10.22201/ceiich.24485691e.2017.19.61783 DOI: https://doi.org/10.22201/ceiich.24485691e.2017.19.61783

Albanese, A., Tang P.S. and Chan. W.C. 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124 DOI: https://doi.org/10.1146/annurev-bioeng-071811-150124

Bewley, J.D., Bradford, K.J., Hilhorst, H.W. and Nonogaki. H. 2013. Seeds: Physiology of development, germination and dormancy, 3rd edition. In Seeds: Physiology of Development, Germination and Dormancy, 3rd Edition (Vol. 9781461446934). https://doi.org/10.1007/978-1-4614-4693-4 DOI: https://doi.org/10.1007/978-1-4614-4693-4

Boonchuay, P., Cakmak, I., Rerkasem, B. and Prom-U-Thai. C. 2013. Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Science and Plant Nutrition, 59(2), 180–188. https://doi.org/10.1080/00380768.2013.763382 DOI: https://doi.org/10.1080/00380768.2013.763382

Brunner, T.J., Wick, P., Manser, P., Spohn, P., Grass, R.N., Limbach, L.K., Bruinink, A. and Stark. W.J. 2006. In vitro cytotoxicity of oxide nanoparticles: Comparison to asbestos, silica, and the effect of particle solubility. Environmental Science and Technology, 40(14), 4374–4381. https://doi.org/10.1021/es052069i DOI: https://doi.org/10.1021/es052069i

Cakmak, I. 2000. Tansley review no. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, 146(2), 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00630.x

Chen, J., Dou, R., Yang, Z., You, T., Gao, X. and Wang. L. 2018. Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry, 130(May), 604–612. https://doi.org/10.1016/j.plaphy.2018.08.019 DOI: https://doi.org/10.1016/j.plaphy.2018.08.019

Chen, K. and Arora. R. 2013. Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany, 94, 33–45. https://doi.org/10.1016/j.envexpbot.2012.03.005 DOI: https://doi.org/10.1016/j.envexpbot.2012.03.005

Chithrani, B.D. and Chan. W.C. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7(6), 1542–1550. https://doi.org/10.1021/nl070363y DOI: https://doi.org/10.1021/nl070363y

Dutta, P. 2018. Seed Priming: New Vistas and Contemporary Perspectives. In Advances in Seed Priming (pp. 3–22). Springer. https://doi.org/10.1007/978-981-13-0032-5 DOI: https://doi.org/10.1007/978-981-13-0032-5_1

Faizan, M., Faraz, A., Yusuf, M., Khan, S.T. and Hayat. S. 2018. Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 56(2), 678–686. https://doi.org/10.1007/s11099-017-0717-0 DOI: https://doi.org/10.1007/s11099-017-0717-0

Fratianni, F., D’acierno, A., Cozzolino, A., Spigno, P., Riccardi, R., Raimo, F., Pane, C., Zaccardelli, M., Lombardo, V.T., Tucci, M., Grillo, S., Coppola, R. and Nazzaro. F. 2020. Biochemical characterization of traditional varieties of sweet pepper (Capsicum annuum l.) of the campania region, southern italy. Antioxidants, 9(6), 1–16. https://doi.org/10.3390/ANTIOX9060556 DOI: https://doi.org/10.3390/antiox9060556

Garciá-López, J.I., Zavala-Garcia, F., Olivares-Saénz, E., Lira-Saldivar, R.H., Barriga-Castro, E.D., Ruiz-Torres, N.A., Ramos-Cortez, E., Vázquez-Alvarado, R. and Ninõ-Medina. G. 2018. Zinc Oxide nanoparticles boosts phenolic compounds and antioxidant activity of capsicum annuum l. during germination. Agronomy, 8(10). https://doi.org/10.3390/agronomy8100215 DOI: https://doi.org/10.3390/agronomy8100215

Garza-Alonso, C.A., González-García, Y., Cadenas-Pliego, G., Olivares-Sáenz, E., Trejo-Téllez, L.I. and Benavides-Mendoza. A. 2021. Seed priming with ZnO nanoparticles promotes early growth and bioactive compounds of Moringa oleifera. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49(4), 1–21. https://doi.org/10.15835/nbha49412546 DOI: https://doi.org/10.15835/nbha49412546

González, S.C., Bolaina-Lorenzo, E., Pérez-Trujillo, J.J., Puente-Urbina, B.A., Rodríguez-Fernández, O., Fonseca-García, A. Betancourt-Galindo. R. 2021. Antibacterial and anticancer activity of ZnO with different morphologies: a comparative study. 3 Biotech, 11(2), 1–12. https://doi.org/10.1007/s13205-020-02611-9 DOI: https://doi.org/10.1007/s13205-020-02611-9

Govorov, A.O. and Carmeli. I. 2007. Hybrid structures composed of photosynthetic system and metal nanoparticles: Plasmon enhancement effect. Nano Letters, 7(3), 620–625. https://doi.org/10.1021/nl062528t DOI: https://doi.org/10.1021/nl062528t

Gratton, S.E., Ropp, P.A., Pohlhaus, P,D., Luft, J.C., Madden, V.J., Napier, M.E. and DeSimone. J.M. 2008. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 11613–11618. https://doi.org/10.1073/pnas.0801763105 DOI: https://doi.org/10.1073/pnas.0801763105

Hajra, A. and Mondal. N.K. 2017. Effects of ZnO and TiO 2 nanoparticles on germination, biochemical and morphoanatomical attributes of Cicer arietinum L. Energy, Ecology and Environment, 2(4), 277–288. https://doi.org/10.1007/s40974-017-0059-6 DOI: https://doi.org/10.1007/s40974-017-0059-6

Hänsch, R. and Mendel. R.R. 2009. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259–266. https://doi.org/10.1016/j.pbi.2009.05.006 DOI: https://doi.org/10.1016/j.pbi.2009.05.006

Upadhyaya, H., Begum, L., Dey, B., Nath, P.K. and Panda. S.K. 2017. Impact of Calcium Phosphate Nanoparticles on Rice Plant. Journal of Plant Science and Phytopathology, 1(1), 001–010. https://doi.org/10.29328/journal.jpsp.1001001 DOI: https://doi.org/10.29328/journal.jpsp.1001001

Itroutwar, P.D., Kasivelu, G., Raguraman, V., Malaichamy, K. and Sevathapandian. S.K. 2020. Effects of biogenic zinc oxide nanoparticles on seed germination and seedling vigor of maize (Zea mays). Biocatalysis and Agricultural Biotechnology, 29(August). https://doi.org/10.1016/j.bcab.2020.101778 DOI: https://doi.org/10.1016/j.bcab.2020.101778

Juárez-Maldonado, A., Ortega-Ortíz, H., Morales-Díaz, A.B., González-Morales, S., Morelos-Moreno, Á., Cabrera-De la Fuente, M., Sandoval-Rangel, A., Cadenas-Pliego, G. and Benavides-Mendoza. A. 2019. Nanoparticles and nanomaterials as plant biostimulants. International Journal of Molecular Sciences, 20(1), 1–19. https://doi.org/10.3390/ijms20010162 DOI: https://doi.org/10.3390/ijms20010162

Kamithi, K.D., Wachira, F. and Kibe. A. 2016. Effects of different priming methods and priming durations on enzyme activities in germinating chickpea (Cicer arietinum L.). American Journal of Natural and Applied Sciences, 1(1), 1–9.

Khademalrasool, M., Farbod, M. and Talebzadeh. M.D. 2021. Investigation of shape effect of silver nanostructures and governing physical mechanisms on photo-activity: Zinc oxide/silver plasmonic photocatalyst. Advanced Powder Technology, 32(6), 1844–1857. https://doi.org/10.1016/j.apt.2021.03.008 DOI: https://doi.org/10.1016/j.apt.2021.03.008

Lawre, S., Laware, S.L. and Raskar.S. 2014. Influence of Zinc Oxide Nanoparticles on Growth, Flowering and Seed Productivity in Onion. Original Research Article Influence of Zinc Oxide Nanoparticles on Growth, 3(7), 874–881. http://www.ijcmas.com

Li, Y., Liang, L., Li, W., Ashraf, U., Ma, L., Tang, X., Pan, S., Tian, H. and Mo. Z. 2021. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology, 19(1), 1–20. https://doi.org/10.1186/s12951-021-00820-9 DOI: https://doi.org/10.1186/s12951-021-00820-9

Liu, M.Z., Zhang, S.Y., Sheng, Y.H. and Zhang. M.L. 2004. Selenium nanoparticles prepared from reverse microemulsion process. Chinese Chemical Letters, 15(10), 1249–1252.

Liu, R. and Lal. R. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment, 514(2015), 131–139. https://doi.org/10.1016/j.scitotenv.2015.01.104 DOI: https://doi.org/10.1016/j.scitotenv.2015.01.104

Mahajan, P., Dhoke, S.K., Kanna, A.S. and Tarafdar. J.C. 2011. Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Applied Biological Research, 13(2), 54–61. DOI: https://doi.org/10.1155/2011/696535

Mahakham, W., Sarmah, A.K., Maensiri, S. and Theerakulpisut. P. 2017. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Scientific Reports, 7(1), 1–21. https://doi.org/10.1038/s41598-017-08669-5 DOI: https://doi.org/10.1038/s41598-017-08669-5

Mahdieh, M., Sangi, M.R., Bamdad, F. and Ghanem. A. 2018. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition, 41(18), 2401–2412. https://doi.org/10.1080/01904167.2018.1510517 DOI: https://doi.org/10.1080/01904167.2018.1510517

Maurel, C., Boursiac, Y., Luu, D.T., Santoni, V., Shahzad, Z. and Verdoucq.L. 2015. Aquaporins in plants. Physiological Reviews, 95(4), 1321–1358. https://doi.org/10.1152/physrev.00008.2015 DOI: https://doi.org/10.1152/physrev.00008.2015

Méndez-López, A., González-García, Y. and Juárez-Maldonado.A. 2022. Stimulatory role of nanomaterials on agricultural crops. In Nano-enabled Agrochemicals in Agriculture (pp. 219–246). https://doi.org/https://doi.org/10.1016/B978-0-323-91009-5.00013-6 DOI: https://doi.org/10.1016/B978-0-323-91009-5.00013-6

Michalak. A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.

Mokhtari, N., Daneshpajouh, S., Seyedbagheri, S., Atashdehghan, R., Abdi, K., Sarkar, S., Minaian, S., Shahverdi, H.R. and Shahverdi.A.R. 2009. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Materials Research Bulletin, 44(6), 1415–1421. https://doi.org/10.1016/j.materresbull.2008.11.021 DOI: https://doi.org/10.1016/j.materresbull.2008.11.021

Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., Zahid, R., Alam, M.F. and Imran. M. 2018. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticumaestivum L.) by seed priming method. Digest Journal of Nanomaterials and Biostructures, 13(1), 315–323.

Nagata, M. and Yamashita.I. 1992. Method Tomato Masayasu * National Nagata * and Ichiji Yamashita * of Vegetables rnamental Plants and Tea , Ministry of Agriculture , Forestry and Fisheries ,. Forestry, 39, 1–4.

Nazerieh, H., Ardebili, Z.O. and Iranbakhsh.A. 2018. Potential benefits and toxicity of nanoselenium and nitric oxide in peppermint. Acta Agriculturae Slovenica, 111(2), 357–368. https://doi.org/10.14720/aas.2018.111.2.11 DOI: https://doi.org/10.14720/aas.2018.111.2.11

Nel, A., Xia, T., Mädler, L. and Li. N. 2006. Toxic potential of materials at the nanolevel. Science, 311(5761), 622–627. https://doi.org/10.1126/science.1114397 DOI: https://doi.org/10.1126/science.1114397

Ng, L.C., Sariah, M., Sariam, O., Radziah, O. and Abidin.M.A. 2012. Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system. Australian Journal of Crop Science, 6(1), 170–175.

Nguyen, D.T., Le, H.T., Nguyen, T.T., Nguyen, T.T.T., Bach, L.G., Nguyen, T.D. and Tran.T.D. 2021. Multifunctional ZnO nanoparticles bio-fabricated from Canna indica L. flowers for seed germination, adsorption, and photocatalytic degradation of organic dyes. Journal of Hazardous Materials, 420(May), 126586. https://doi.org/10.1016/j.jhazmat.2021.126586 DOI: https://doi.org/10.1016/j.jhazmat.2021.126586

Nounjan, N., Siangliw, J.L., Toojinda, T., Chadchawan, S. and Theerakulpisut.P. 2016. Salt-responsive mechanisms in chromosome segment substitution lines of rice (Oryza sativa L. cv. KDML105). Plant Physiology and Biochemistry, 103, 96–105. https://doi.org/10.1016/j.plaphy.2016.02.038 DOI: https://doi.org/10.1016/j.plaphy.2016.02.038

Parisi, C., Vigani, M. and Rodríguez-Cerezo.E. 2015. Agricultural nanotechnologies: What are the current possibilities? Nano Today, 10(2), 124–127. https://doi.org/10.1016/j.nantod.2014.09.009 DOI: https://doi.org/10.1016/j.nantod.2014.09.009

Park, J.H., Von, M.G., Zhang, L., Schwartz, M.P., Ruoslahti, E., Bhatia, S.N. and Sailor.M.J. 2008. Magnetic iron oxide nanoworms for tumor targeting and imaging. Advanced Materials, 20(9), 1630–1635. https://doi.org/10.1002/adma.200800004 DOI: https://doi.org/10.1002/adma.200800004

Peng, X., Palma, S., Fisher, N.S. and Wong.S.S. 2011. Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquatic Toxicology, 102(3–4), 186–196. https://doi.org/10.1016/j.aquatox.2011.01.014 DOI: https://doi.org/10.1016/j.aquatox.2011.01.014

Pérez-Velasco, E., Valdez-Aguilar, L.A., Betancourt-Galindo, R., Martínez-Juárez, J., Lozano-Morales, S.A. and González-Fuentes. J.A. 2021. Gas Exchange Parameters, Fruit Yield, Quality, and Nutrient Status in Tomato Are Stimulated by ZnO Nanoparticles of Modified Surface and Morphology and Their Application Form. Journal of Soil Science and Plant Nutrition, 21(2), 991–1003. https://doi.org/10.1007/s42729-021-00416-0 DOI: https://doi.org/10.1007/s42729-021-00416-0

Pokovai, K. and Fodor.N. 2019. Adjusting ceptometer data to improve leaf area index measurements. Agronomy, 9(12), 1–13. https://doi.org/10.3390/agronomy9120866 DOI: https://doi.org/10.3390/agronomy9120866

Prasad, T.N., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R. and Pradeep. T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905–927. https://doi.org/10.1080/01904167.2012.663443 DOI: https://doi.org/10.1080/01904167.2012.663443

Rai-Kalal P, Jajoo A. 2021. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160(January), 341–351. https://doi.org/10.1016/j.plaphy.2021.01.032 DOI: https://doi.org/10.1016/j.plaphy.2021.01.032

Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C. and Job.D. 2012. Seed germination and vigor. Annual Review of Plant Biology, 63, 507–533. https://doi.org/10.1146/annurev-arplant-042811-105550 DOI: https://doi.org/10.1146/annurev-arplant-042811-105550

Rundquist, D., Gitelson, A., Leavitt, B., Zygielbaum, A., Perk, R. and Keydan.G. 2014. Elements of an integrated phenotyping system for monitoring crop status at canopy level. Agronomy, 4(1), 108–123. https://doi.org/10.3390/agronomy4010108 DOI: https://doi.org/10.3390/agronomy4010108

Hawkesford, M.J. and Barraclough.P.B. 2011. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops. Wiley-Blackwell, Chichester, UK. https://doi.org/10.1002/9780470960707 DOI: https://doi.org/10.1002/9780470960707

Sau, T.K. and Rogach.A.L. 2010. Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Advanced Materials, 22(16), 1781–1804. https://doi.org/10.1002/adma.200901271 DOI: https://doi.org/10.1002/adma.200901271

Sharifi.R. 2016. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environmental and Experimental Biology, 14(4), 151–156. https://doi.org/10.22364/eeb.14.21 DOI: https://doi.org/10.22364/eeb.14.21

Shenashen, M.A., El-Safty, S.A. and Elshehy.E.A. 2014. Synthesis, morphological control, and properties of silver nanoparticles in potential applications. Particle and Particle Systems Characterization, 31(3), 293–316. https://doi.org/10.1002/ppsc.201300181 DOI: https://doi.org/10.1002/ppsc.201300181

Singh, A., Prasad, S.M. and Singh.S. 2018. Impact of nano ZnO on metabolic attributes and fluorescence kinetics of rice seedlings. Environmental Nanotechnology, Monitoring and Management, 9(November 2017), 42–49. https://doi.org/10.1016/j.enmm.2017.11.006 DOI: https://doi.org/10.1016/j.enmm.2017.11.006

Singh, R.P., Handa, R. and Manchanda.G. 2021. Nanoparticles in sustainable agriculture: An emerging opportunity. Journal of Controlled Release, 329, 1234–1248. https://doi.org/10.1016/j.jconrel.2020.10.051 DOI: https://doi.org/10.1016/j.jconrel.2020.10.051

Singleton,V.L., Orthofer, R. and Lamuela-Raventos.R.M. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology (pp. 152–178). DOI: https://doi.org/10.1016/S0076-6879(99)99017-1

Steiner. A.A. 1961. A universal method for preparing nutrient solutions of a certain desired composition. Plant and soil, 15(2), 134-154. DOI: https://doi.org/10.1007/BF01347224

Sturikova, H., Krystofova, O., Huska, D. and Adam.V. 2018. Zinc, zinc nanoparticles and plants. Journal of Hazardous Materials, 349, 101–110. https://doi.org/10.1016/j.jhazmat.2018.01.040 DOI: https://doi.org/10.1016/j.jhazmat.2018.01.040

Syu, Y., Hung, J.H., Chen, J.C. and Chuang.H. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology and Biochemistry, 83(July 2014), 57–64. https://doi.org/10.1016/j.plaphy.2014.07.010 DOI: https://doi.org/10.1016/j.plaphy.2014.07.010

Rehman, U.H., Basra, S.M.A. and Farooq.M. 2011. Field appraisal of seed priming to improve the growth, yield, and quality of direct seeded rice. Turkish Journal of Agriculture and Forestry, 35(4), 357–367. https://doi.org/10.3906/tar-1004-954 DOI: https://doi.org/10.3906/tar-1004-954

Wang, P. and Grimm.B. 2021. Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus. Trends in Plant Science, 26(5), 484–495. https://doi.org/10.1016/j.tplants.2020.12.005 DOI: https://doi.org/10.1016/j.tplants.2020.12.005

Welch.R. 1982. Zinc in membrane function and its role in phosphorous toxicity. In 9th Conf. Commonweath Agricultural Bureau, Colloquium, Warwick, England, (pp. 710–715).

Xiu, Z.M., Zhang, Q.B., Puppala, H.L., Colvin, V.L. and Alvarez.P.J.J. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 12(8), 4271–4275. https://doi.org/10.1021/nl301934w DOI: https://doi.org/10.1021/nl301934w

Zafar, H., Ali, A., Ali, J.S., Haq, I.U. and Zia.M. 2016. Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: Growth dynamics and antioxidative response. Frontiers in Plant Science, 7(APR2016), 1–8. https://doi.org/10.3389/fpls.2016.00535 DOI: https://doi.org/10.3389/fpls.2016.00535

Zhao, J. and Stenzel.M.H. 2018. Entry of nanoparticles into cells: The importance of nanoparticle properties. Polymer Chemistry, 9(3), 259–272. https://doi.org/10.1039/c7py01603d DOI: https://doi.org/10.1039/C7PY01603D

Zhao, L., Su, Y., Hernandez-Viezcas, J.A., Servin, A.D., Hong, J., Niu, G., Peralta-Videa, J.R., Duarte-Garde, M., Gardea-Torresdey. J.L. 2013. Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: A Life Cycle Study. Journal of Agricultural and Food Chemistry, 61(49), 11945–11951. https://doi.org/10.1021/jf404328e DOI: https://doi.org/10.1021/jf404328e

GRAPHICAL ABSTRACT

Archivos adicionales

Publicado

2023-09-01

Cómo citar

Magdaleno García, G., Juárez Maldonado, A., Betancourt Galindo, R., González Morales, S., Cabrera De La Fuente, M., Sánchez Vega, M., & MENDEZ, A. (2023). Morfología de nanopartículas de óxido de zinc modifica la germinación y el crecimiento temprano de plántulas de pimiento morrón: Morfología de nanopartículas de óxido de zinc. Biotecnia, 25(3), 5–15. https://doi.org/10.18633/biotecnia.v25i3.1908

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.