Actividad antimicrobiana y antibiopelicula del extracto vegetal Sambucus canadensis en bacterias patogenas transmitidas por alimentos

Actividad antimicrobiana y antibiopelícula del extracto vegetal Sambucus canadensis

Autores/as

  • G Velazquez-Vazquez Decanato de Ciencias Biológicas. Facultad de Biotecnología. Universidad Popular Autónoma del Estado de Puebla. 21 sur 1103 Col. Santiago. 72160. Puebla, México.
  • E Ortega Morente Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, Granada, España.
  • A Cobo Molinos Departamento de Microbiología, Facultad de Farmacia, Universidad de Granada, Granada, España. Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, España.
  • B Perez Armendariz Decanato de Ciencias Biológicas. Facultad de Biotecnología. Universidad Popular Autónoma del Estado de Puebla. 21 sur 1103 Col. Santiago. 72160. Puebla, México.

DOI:

https://doi.org/10.18633/biotecnia.v25i3.2115

Palabras clave:

extracto vegetal, disgregación, formación, bacteria, salud., extracto, vegetal,disgregación,formación,bacteria,salud

Resumen

Los alimentos contaminados por patógenos forman biopelículas con una alta resistencia a biocidas, desinfectantes y antibióticos. Los extractos vegetales pueden ser una alternativa potencial para combatirlos. Este estudio evaluó la actividad antimicrobiana y anti biopelícula de un extracto vegetal (Sambucus canadensis) utilizado ampliamente en comunidades indígenas de México. El trabajo se realizó con bacterias aisladas de alimentos orgánicos. Las pruebas antimicrobianas mostraron actividad en todas las cepas evaluadas principalmente en S. aureus 976, S. entérica 915, E. coli 47553 (CMI 65.1 y 50 µg/mL) respectivamente. Respecto a la obstrucción en la formación de biopelícula se encontraron resultados significativos menores a 35 % a la concentración más baja 0.01 µg/mL frente a las cepas S. aureus CECT 976 y E. coli 47553. Respecto a los resultados en la disgregación del biopelicula las bacterias E. coli CECT 4757, S. aureus CECT 976 y S. aureus CECT 4465 lograron hasta un 36 % de disgregación en la concentración más baja de 0.01 µg/mL siendo estadísticamente significativo respecto al control (p < 0.001). Los resultados indican que el extracto vegetal tiene un alto potencial de actividad antibiopelícula frente a bacterias que afectan la inocuidad de los alimentos y plantean riegos para la salud de las personas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelmigid HM (2013). New insigths into Toxity and Drug Testing. Sivakumar Joghi Thatha Gowder 254 p.

Adnan M, Patel M, Deshpande S, Alreshidi M, Siddiqui AJ, Reddy MN, Emira N, De Feo V (2020). Effect of Adiantum philippense Extract on Biofilm Formation, Adhesion With Its Antibacterial Activities Against Foodborne Pathogens, and Characterization of Bioactive Metabolites: An in vitro-in silico Approach. Frontiers in Microbiology. 11:823-838

Alejo-Armijo A, Glibota N, Frías MP, Altarejos J, Gálvez A, Salido S, Ortega-Morente E. (2018). Synthesis and Evaluation of Antimicrobial and Antibiofilm Properties of A-Type Procyanidin Analogues against Resistant Bacteria in Food. Journal of Agricultural and Food Chemistry 2151–2158.

Al-Dhabi NA, Arasu MV, Rejiniemon TS (2015). In Vitro Antibacterial, Antifungal, Antibiofilm, Antioxidant, and Anticancer Properties of Isosteviol Isolated from Endangered Medicinal Plant Pittosporum tetraspermum. Evidence- Based Complementary and Alternative Medicine. 15:1-11

Adukwu EC, Allen SCH, Phillips CA (2012) The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. Journal of Applied Microbiology 113:1217-1227

Bazargani MM, Rohloff J (2016) Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control 61:156-164

Budri PE, Silva NC, Bonsaglia ECR, Fernandes A, Araujo JP, Doyama JT, Goncalves JL, Santos MV, Fitzgerald-Hughes D, Rall VLM (2015). Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. Journal of Dairy Science 98: 5899-5904

Caraher E, Reynolds G, Murphy P (2007). Comparison of antibiotic susceptibility of Burkholderia cepacia complex organisms when grown planktonically or as biofilm in vitro. European. Journal of Clinical Microbiology and Infectious Diseases 26: 213–221

Cha JD, Jeong MR, Choi HJ, Jeong S, Moon SE, Yun S, Kim YH, Kil BS, Song YH (2005) Chemical composition and antimicrobial activity of the essential oil of Artemisia lavandulaefolia. Planta Medica 71: 575-577.

Clinical and Laboratory Standards Institute (CLSI) (2015) Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement, Vol. 34. Document M100eS24, No. 3; CLSI: Wayne, PA, 2015.

Davies D (2003). Understanding biofilm resistance to antibacterial agents. Nature Review Drugs Discovery. 2: 114-22

Dean SN, Bishop BM, van Hoek ML. (2011) Natural and synthetic cathelicidinpeptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiology. 11: 114− 126.

Djordjevic D, Wiedmann M, McLandsborough LA (2002). Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Applied and Environmental Microbiology. 68: 2950–2958.

Dwivedi D, Singh V (2016). Effects of the natural compounds embelin and piper- ine on the biofilm-producing property of Streptococcus mutans. Journal of Traditional and Complementary Medicine. 6: 57-61

Elhariry H, Abuzaid AA, Khiralla GM, Gherbawy Y (2014). Antibiofilm formation and anti-adhesive (to HEp-2 cells) effects of rosemary water extract against some food-related pathogens. International Journal of Food Science and Technology 49: 1132–1141

Fernández-Fuentes MA, Ortega-Morente E, Abriouel H, Perez R, Galvez A (2012) Isolation and Identification of Bacteria from Organic Foods: Sensitivity to Biocides and Antibiotics. Food Control. 2: 73–78.

Friedman M (2015). Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. Journal of Agricucultural and Food Chemistry. 63: 3805−3822

Holetz F, Barbiéri P, Greisiele L, Sanches N, Rogério C, Diógenes A, Nakamura C, Vataru D, Filho B (2002). Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Memórias do Instituto Oswaldo Cruz, 97: 1027-1031.

Hearst C, McCollum G, Nelson D, Ballard LM, Millar BC, Goldsmith CE, Rao JR (2010). Antibacterial activity of elder (Sambucus nigra L.) flower or berry against hospital pathogens. Journal of Medicinal Plants Research. 4: 1805-1809.

Kot B, Wicha J, Piechota M, Wolska K, Gruzewska A (2015). Antibiofilm activity of trans-cinnamaldehyde, p-coumaric, and ferulic acids on uropatho- genic Escherichia coli. Turkish Journal of Veterinary and Animal Sciences. 45: 919-924.

Kavanaugh NL, Ribbeck K (2012). Selected antimicrobial essential oils eradicate Pseudomonas spp. and Staphylococcus aureus biofilms. Applied and Environmental Microbiology 78: 4057-4061

Lahiri D, Dash S, Dutta R, Nag, M (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences 44-52.

Lee J, Finn CE (2007). Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. Journal of the Science of Food and Agriculture 87: 2665–2675

Mantzourani I, Daoutidou M, Dasenaki M, Nikolaou A, Alexopoulos A, Terpou A, Thomaidis, N, Plessas S (2022) Plant Extract and Essential Oil Application against Food-Borne Pathogens in Raw Pork Meat. Foods . 11:1-13

Melo AS, Colombo AL, Arthington-Skaggs BA (2007). Paradoxical growth effect of caspofungin observed on biofilms and planktonic cells of five different Candida species. Antimicrobial Agents Chemotherapy. 51: 3081−3088.

Mehmood A, Murtaza G. (2018). Phenolic contents, antimicrobial and antioxidant activity of Olea ferruginea Royle (Oleaceae). BMC Complementary Medicine and Therapies.18: 173-178.

Naz S, Jabeen S, Llyas S, Manzoor F, Aslam F, Ali A (2010). Antibacterial Activity of Curcuma longa varieties against different strains of Bacteria. Pakistan Journal of Botany. 42: 455-462

Ortega-Vidal J, Cobo A, Ortega-Morente E, Gálvez A, Alejo-Armijo A, Salido S, Altarejos J (2021). Antimicrobial and antioxidant activities of flavonoids isolated from wood of sweet cherry tree (Prunus avium L.). Journal of Wood Chemistry and Technology. 41:104-117

Ortega-Peña S, Hernández-Zamora E. (2018). Biopelículas microbianas y su impacto en áreas médicas: fisiopatología, diagnóstico y tratamiento. Boletín médico del Hospital Infantil de México 75: 79-88.

Ortega-Peña F, Cendejas R (2014) Importancia médica del biofilm de Staphylococcus epidermidis en las infecciones de prótesis articular. Investigacion en Discapacidad. 3:106-

Rane HS, Bernardo SM, Howell AB, Lee SA (2014). Cranberry-derived proanthocyanidins prevent formation of Candida albicans biofilms in artificial urine through biofilm- and adherence- specific mechanisms. Journal Antimicrobial Chemotherapy. 69: 428−436.

Rudrappa T, Bais HP (2008). Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. Journal of Agriculture and Food Chemistry. 56: 1955–1962

Sidor A, Gramza-MA (2014). Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food a review. Journal of functional foods. 18:941–958.

Takarada K, Kimizuka R, Takahashi N, Honma K, Okuda K, Kato TA (2004) Comparison of the antibacterial efficacies of essential oils against oral pathogens. Oral Microbiology Immunology 19: 61-64

Tedesco M, Kuhn AW, Frescura VD, Boligon AA, Athayde ML, Tedesco SB, Silva AC (2017). Assessment of the antiproliferative and antigenotoxic activity and phytochemical screening of aqueous extracts of Sambucus australis Cham. & Schltdl. (Adoxaceae). Anais da Academia Brasileira de Ciencias 89: 2141-2154.

Pina-Pérez MC, Ferrús-Pérez MA (2018). Antimicrobial potential of legumes extracts against foodborne pathogens: A review. Trends in Food Science and Technology. 72:114-124.

Pui CF, Wong WC, Chai LC, Tunung R, Jeyaletchumi P, Noor H, Ubong A, Farinazleen, MG, Cheah YK, Son R. (2011). Salmonella: A foodborne pathogen. Review Article. International Food Research Journal. 18: 465-473.

Pisoschi AM, Pop A, Georgescu C, Turcus V, Olah NK, Mathe E (2018) An overview of natural antimicrobials role in food. European Journal of Medicinal Chemistry. 143: 922−935.

Ritter AC, Tondo EC (2014) Foodborne illnesses in Brazil: control measures for 2014 FIFA World Cup travellers. Review Article. The journal of infection in Developing Countries. 8: 254-257.

Skogman ME, Kujala J, Busygin I, Leino R, Vuorela PM, Fallarero A (2012). Evaluation of antibacterial and anti-biofilm activities of cinchona alkaloid derivatives against Staphylococcus aureus. Natural Product Communications 7: 1173–1176.

Sarkar R, Chaudhary SK, Sharma A, Yadav K, Nema NK, Sekhoacha M, Sen T (2014). Anti-biofilm activity of Marula a study with the standardized bark extract. Journal of Ethnopharmacology. 154:170–175

Teanpaisan R, Kawsud P, Pahumunto N, Puripattanavong J (2017). Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. Journal of Traditional and Complementary Medicine 7: 172–177.

Ulrey RK, Barksdale SM, Zhou W, Van Hoek ML (2014). Cranberry proanthocyanidins have anti-biofilm properties against Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine. 14: 499–511.

Vasudevan R (2014) Biofilms: microbial cities of scientific significance. Journal of Microbiology and Experimentation. 1: 1–16

Yatsuda R, Rosalen PL, Cury JA, Murata RM, Rehder VLG, Melo LV, Koo H (2005). Effects of Mikania genus plants on growth and cell adherence of mutans streptococci. Journal of Ethnopharmacology. 97: 183-189.

WHO (World Health Organization) (2016) WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015. Ginebra, Switzerland.

Portada V25i3 Biotecnia

Descargas

Publicado

2023-11-14

Cómo citar

Velazquez, G., Ortega Morente, E., Cobo Molinos, A., & Perez Armendariz, B. . (2023). Actividad antimicrobiana y antibiopelicula del extracto vegetal Sambucus canadensis en bacterias patogenas transmitidas por alimentos: Actividad antimicrobiana y antibiopelícula del extracto vegetal Sambucus canadensis . Biotecnia, 25(3), 176–183. https://doi.org/10.18633/biotecnia.v25i3.2115

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.