Influencia del recubrimiento de quitosano con aceite esencial de menta sobre la seguridad microbiológica, los compuestos bioactivos y la capacidad antioxidante del mango fresco cortado
DOI:
https://doi.org/10.18633/biotecnia.v27.2442Palabras clave:
Mango mínimamente procesado, tratamiento antimicrobianos, DPPH, calidad fisicoquímica, Mangifera indicaResumen
El mango fresco-cortado tiene gran demanda en países desarrollados; sin embargo, éste se deteriora rápidamente y presenta un medio adecuado para el crecimiento microbiano durante el almacenamiento. Los recubrimientos de quitosano y otros materiales naturales, como los aceites esenciales, han sido utilizados para disminuir estos daños. El objetivo de este estudio fue evaluar el efecto del quitosano (CH), aceite esencial de menta (MEO) y su combinación (CH+MEO) sobre la incidencia microbiológica, el contenido de compuestos bioactivos y la capacidad antioxidante del mango fresco-cortado almacenado durante 15 d a 5 °C. Los análisis microbiológicos (mesófilos, psicrófilos, hongos y levaduras) se evaluaron después de 0, 7 y 15 d de almacenamiento. Los análisis físicos (color y firmeza) y químicos (sólidos solubles totales, acidez titulable, ácido ascórbico, fenoles, β-caroteno y capacidad antioxidante) se realizaron cada 3 d. Los tratamientos aplicados redujeron con éxito el crecimiento microbiano con la misma intensidad, además ninguno causó efectos negativos significativos en color, firmeza, sólidos solubles totales, acidez titulable y ácido ascórbico. No obstante, los contenidos más altos de fenoles totales y β-caroteno se obtuvieron con CH+MEO, mientras que los frutos tratados con CH y CH+MEO tuvieron la mayor capacidad antioxidante. La aplicación de CH+MEO podría usarse para reducir su carga microbiana al mismo tiempo que aumenta los compuestos bioactivos y la capacidad antioxidante del mango fresco-cortado.
Descargas
Citas
Abdelgawad, K.F., Awad, A.H., Ali, M.R., Ludlow, R.A., Chen, T., and El-Mogy, M.M. 2022. Increasing the storability of fresh-cut green beans by using chitosan as a carrier for tea tree and peppermint essential oils and ascorbic acid. Plants. 11(6): 783. https://doi.org/10.3390/plants11060783
Ali, A., Pheng, T.W., and Mustafa, M.A. 2015. Application of lemongrass oil in vapour phase for the effective control of anthracnose of ´Sekaki´ papaya. Journal of Applied Microbiology. 118: 1456-1464. https://doi.org/10.1111/jam.12782
Alikhani, M. 2014. Enhancing safety and shelf life of fresh‐cut mango by application of edible coatings and microencapsulation technique. Food Science & Nutrition. 2: 210-217. https://doi.org/10.1002/fsn3.98
Ayón‐Reyna, L.E., Tamayo‐Limón, R., Cárdenas‐Torres, F., López‐López, M.E., López‐Angulo, G., López‐Moreno, H.S., and Vega‐García, M.O. 2015. Effectiveness of hydrothermal‐calcium chloride treatment and chitosan on quality retention and microbial growth during storage of fresh‐cut papaya. Journal of Food Science. 80(3): C594-C601. https://doi.org/10.1111/1750-3841.12783
Ayón-Reyna, L.E., López-Valenzuela, J.Á., Delgado-Vargas, F., López-López, M.E., Molina-Corral, F.J., Carrillo-López, A., and Vega-García, M.O. 2017. Effect of the combination hot water-calcium chloride on the in vitro growth of Colletotrichum gloeosporioides and the postharvest quality of infected papaya. The Plant Pathology Journal. 33(6): 572. https://doi.org/10.5423/PPJ.OA.01.2017.0004
Ayón‐Reyna, L.E., Delgado‐Vargas, F., Soltero‐Sánchez, C.A., López‐Angulo, G., López‐López, M.E., López‐Velázquez, J.G., Parra-Unda, J.R., and Vega‐García, M.O. 2018. Bioactive compounds and antioxidant activity of papaya inoculated with Colletotrichum gloeosporioides as affected by hot water–calcium chloride. Journal of Food Biochemistry. 42(5): e12608. https://doi.org/10.1111/jfbc.12608
Azarakhsh, N., Osman, A., Ghazali, M.H., Tan, C.P., and Adzahan, M.N. 2014. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology. 88: 1–7. https://doi.org/10.1016/j.postharvbio.2013.09.004
Barreto, T., Andrade, S., Maciel, F.J., Arcanjo, O.M.N., Madruga, S.M., Meireles, B., Cordeiro, T.M.A., Souza, L.E., & Magnani, M. 2016. A chitosan coating containing essential oil from Origanum vulgare L. to control postharvest mold infections and keep the quality of cherry tomato fruit. Frontiers in Microbiology. 1: 1-14. https://doi.org/10.3389/fmicb.2016.01724
Bitencourt, R.G., Possas, A.M.M., Camilloto, G.P., Cruz, R.S., Otoni, C.G., and Soares, N.D.F.F. 2014. Antimicrobial and aromatic edible coating on fresh-cut pineapple preservation. Ciência Rural, 44, 1119-1125. https://doi.org/10.1590/S0103-84782014000600027
Chen, F., Kowaleguet, M.G.G.M., Shi, W., Zhang, S., Dai, J., Ban, Z., Wang, L., Wu, Y., and Wang, H. 2022. Associating chitosan and nanoemulsion as a delivery system of essential oil; the potential on quality maintenance of minimally processed produce. LWT. 155: 112925. https://doi.org/10.1016/j.lwt.2021.112925
Dantas-Guerra, I.C., Lima de Oliveira, P.D., Fernandes-Santos, M.M., Carneiro-Lúcio, A.S.S., Fechine-Tavares, J., Barbosa-Filho, J.M., Suely-Magruda, M., and Leite de Souza, E. 2016. The effects of composite coatings containing chitosan and mentha (piperita L. or x villosa Huds) essential oil on postharvest mold occurrence and quality of table grape cv. Isabella. Innovative Food Science and Emerging Technologies. 34: 112-121. https://doi.org/10.1016/j.ifset.2016.01.008
de Oliveira, K.A.R., Ramos, B.L.R., De Araujo, S.A., Saraiva, C.M.P., and De Souza, L.E. 2017. Synergistic mixtures of chitosan and Mentha piperita L. essential oil to inhibit Colletotrichum species and anthracnose development in mango cultivar Tommy Atkins. Food Microbiology. 66: 96-103. https://doi.org/10.1016/j.fm.2017.04.012
Dos Passos Braga, S., Lundgren, G.A., Macedo, S.A., Tavares, J.F., dos Santos Vieira, W.A., Câmara, M. P.S., and de Souza, E.L. 2019. Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. International Journal of Biological Macromolecules. 139: 631–639. https://doi.org/10.1016/j.ijbiomac.2019.08.010
FDA. FDA (Food and Drug Administration), Silver Spring, Maryland, USA. 2023. Code of Federal Regulations. Title 21, Volume 3. Cite: 21CFR182.20. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=182.20. Accessed January 23rd, 2024.
Grande-Tovar, C.D., Chaves-Lopez, C., Serio, A., Rossi, C., and Paparella, A. 2018. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends in Food Science & Technology. 78: 61-71. https://doi.org/10.1016/j.tifs.2018.05.019
Hanani, Z.N., Soo, K.L., Zunairah, W.W., and Radhiah, S. 2023. Prolonging the shelf life of fresh-cut guava (Psidium guajaya L.) by coating with chitosan and cinnamon essential oil. Heliyon. 9(12). https://doi.org/10.1016/j.heliyon.2023.e22419
Jovanovic, G.D., Klaus, A.S., and Niksic, M.P. 2016. Antimicrobial activity of chitosan films with essential oils against Listeria monocytogenes on cabbage. Jundishapur Journal of Microbiology. 9(9). https://doi.org/10.5812/jjm.34804
López-López, M.E., López-Valenzuela, J.Á., Delgado-Vargas, F., López-Angulo, G., Carrillo-López, A., Ayón-Reyna, L.E., and Vega-García, M.O. 2018. A treatment combining hot water with calcium lactate improves the chilling injury tolerance of mango fruit. HortScience. 53(2): 217-223. https://doi.org/10.21273/HORTSCI12575-17
López‐Velázquez, J.G., Delgado‐Vargas, F., López‐Ángulo, G., García‐Armenta, E., López‐López, M.E., Ayón‐Reyna, L.E., Diaz-Corona, D.A., and Vega‐García, M.O. 2020. Phenolic profile associated with chilling tolerance induced by the application of a hot water treatment in bell pepper fruit. Journal of Food Science. 85(7): 2080-2089. https://doi.org/10.1111/1750-3841.15310
Martínez, K., Ortiz, M., Albis, A., Gilma Gutiérrez Castañeda, C., Valencia, M.E., and Grande Tovar, C.D. 2018. The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria x ananassa) during cold storage. Biomolecules. 8(4): 155. https://doi.org/10.3390/biom8040155
Minh, N.P., Nhi, T.T.Y., Hue, D.N., Ha, D.T.T., and Chien, V.M. 2019. Quality and shelf life of processed pineapple by different edible coatings. Journal of Pharmaceutical Sciences and Research, 11(4), 1441-1446.
NOM-093. Norma Oficial Mexicana-093-SSA1-1994. Bienes y servicios. Prácticas de higiene y sanidad en la preparación de alimentos que se ofrecen en establecimientos fijos.
Picard, I., Hollingsworth, R.G., Wall, M., Nishijima, K., Salmieri, S., Vu, K.D., and Lacroix, M. 2013. Effects of chitosan-based coatings containing peppermint essential oil on the quality of post-harvest papaya fruit. International Journal of Postharvest Technology and Innovation. 3(2): 178-189.
Rahimi, R., ValizadehKaji, B., Khadivi, A., and Shahrjerdi, I. 2019. Effect of chitosan and thymol essential oil on quality maintenance and shelf life extension of peach fruits cv. ‘Zaferani’. Journal of Horticulture and Postharvest Research. 2(2): 143-156. https://doi.org/10.22077/jhpr.2019.2349.1048
Rico-Rodríguez, F., Gutiérrez Cortés, C., and Díaz Moreno, C. 2015. Influence of chitosan coatings with citric essential oil on the shelf-life of minimally processed mango (Mangifera indica L.). Revista Facultad Nacional de Agronomía Medellín. 68(2): 7679-7688. https://doi.org/10.15446/rfnam.v68n2.50983
Sarengaowa, Wang, L., Liu, Y., Yang, C., Feng, K., and Hu, W. 2022. Screening of essential oils and effect of a chitosan-based edible coating containing cinnamon oil on the quality and microbial safety of fresh-cut potatoes. Coatings. 12(10): 1492. https://doi.org/10.3390/coatings12101492
Sotelo-Boyás, M.E., Valverde-Aguilar, G., Plascencia-Jatomea, M., Correa-Pacheco, Z.N., Jiménez-Aparicio, A., Solorza-Feria, J., Barrera-Necha, L., and Bautista-Baños, S. 2015. Characterization of chitosan nanoparticles added with essential oils: In vitro effect on Pectobacterium carotovorum. Revista Mexicana de Ingeniería Química. 14(3): 589-599.
Stasińska-Jakubas, M., and Hawrylak-Nowak, B. 2022. Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules. 27(9): 2801. https://doi.org/10.3390/molecules27092801
Tafrihi, M., Imran, M., Tufail, T., Gondal, T.A., Caruso, G., Sharma, S., Atanassova, M., Atanassov, L., Fokou, P., and Pezzani, R. 2021. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules. 26(4): 1118. https://doi.org/10.3390/molecules26041118
Viacava, G.E., Ayala-Zavala, J.F., González-Aguilar, G.A., and Ansorena, M.R. 2018. Effect of free and microencapsulated thyme essential oil on quality attributes of minimally processed lettuce. Postharvest Biology and Technology. 145: 125–133. https://doi.org/10.1016/j.postharvbio.2018.07.004
Xing, Y., Lin, H., Cao, D., Xu, Q., Han, W., Wang, R., Che, Z., and Li, X. 2015. Effect of chitosan coating with cinnamon oil on the quality and physiological attributes of China jujube fruits. BioMed Research International. 2015: 1-10. http://dx.doi.org/10.1155/2015/835151
Xylia, P., Chrysargyris, A., and Tzortzakis, N. 2021. The combined and single effect of marjoram essential oil, ascorbic acid, and chitosan on fresh-cut lettuce preservation. Foods. 10(3): 575. https://doi.org/10.3390/foods10030575

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)