Efecto combinado de los complejos ternarios entre flavonoides y pectina sobre la actividad in vitro de lipasa pancreática
DOI:
https://doi.org/10.18633/biotecnia.v27.2602Palabras clave:
inhibición , isobolograma, synergista, additivoResumen
Actualmente, se buscan opciones naturales para la inhibición de lipasa pancreática (PL), esto como parte del tratamiento para la obesidad. En donde, compuestos bioactivos de los vegetales como los flavonoides son opciones. Sin embargo, en estos productos también se encuentran otros compuestos como la pectina (PEC). Debido a la falta de estudios que analicen el efecto combinado de las propiedades inhibitorias de flavonoides (como Catequina, CAT; Epicatequina, EPI; y Naringenina, NAR) con y sin PEC, ese fue el objetivo de este trabajo. Se determinaron valores de índice de combinación (CI), e isobologramas. La actividad catalítica se midió empleando espectroscopia UV-Vis. Se evaluaron seis diferentes combinaciones de flavonoides, con y sin PEC. Sin PEC, los valores individuales de IC50 fueron similares, y presentaron un modo de inhibición acompetitiva. De acuerdo con los valores de CI y los isobologramas, se observaron principalmente efectos sinérgicos (CI < 0.90) para las combinaciones de flavonoides, aún con PEC. Esta aumentó la actividad inhibitoria de las combinaciones, contribuyendo con un mayor efecto sinérgico sobre la actividad de PL. De forma notable, la combinación EPI-NAR, con y sin PEC presentó el mejor efecto sinérgico inhibitorio (valores de CI de 0.58 ± 0.02 y 0.68 ± 0.00, respectivamente).
Descargas
Citas
Aftab, N., Vieira, A., 2010. Antioxidant activities of curcumin and combinations of this curcuminoid with other phytochemicals. Phytotherapy Research 24, 500–502.
Alam, Md., Kauter, K., Brown, L., 2013. Naringin Improves Diet-Induced Cardiovascular Dysfunction and Obesity in High Carbohydrate, High Fat Diet-Fed Rats. Nutrients 5, 637–650.
Angulo-López, J.E., Flores-Gallegos, A.C., Ascacio-Valdes, J.A., Contreras Esquivel, J.C., Torres-León, C., Rúelas-Chácon, X., Aguilar, C.N., 2023. Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods.
Badgujar, K.C., Bhanage, B.M., 2015. Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydr Polym 134, 709–717.
Birari, R.B., Bhutani, K.K., 2007. Pancreatic lipase inhibitors from natural sources: unexplored potential. Drug Discov Today.
Buchholz, T., Melzig, M.F., 2015. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Med.
Chandel, V., Biswas, D., Roy, S., Vaidya, D., Verma, A., Gupta, A., 2022. Current Advancements in Pectin: Extraction, Properties and Multifunctional Applications. Foods.
Chou, T.C., 2006. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58, 621–681.
Chou, T.C., 2010. Drug combination studies and their synergy quantification using the chou-talalay method. Cancer Res.
Crozier, A., Jaganath, I.B., Clifford, M.N., 2009. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat Prod Rep 26, 1001–1043.
De Freitas, V., Mateus, N., 2001. Structural features of procyanidin interactions with salivary proteins. J Agric Food Chem 49, 940–945.
Dukel, M., 2023. Combination of naringenin and epicatechin sensitizes colon carcinoma cells to anoikis via regulation of the epithelial–mesenchymal transition (EMT). Mol Cell Toxicol 19, 187–203.
Freitas, C.M.P., Coimbra, J.S.R., Souza, V.G.L., Sousa, R.C.S., 2021. Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings.
Harholt, J., Suttangkakul, A., Scheller, H.V., 2010. Biosynthesis of pectin. Plant Physiol 153, 384–395.
Hidalgo, I., Nájera, N., Meaney, E., Pérez-Durán, J., Valdespino-Vazquez, Y., Villarreal, F., Ceballos, G., 2020. Effects of (−)-epicatechin on the time course of the expression of perilipins in a diet-induced model of nonalcoholic steatohepatitis. Journal of Nutritional Biochemistry 77.
Huang, H., Zhao, M., 2008. Changes of trypsin in activity and secondary structure induced by complex with trypsin inhibitors and tea polyphenol. European Food Research and Technology 227, 361–365.
Huang, R., Zhang, Y., Shen, S., Zhi, Z., Cheng, H., Chen, S., Ye, X., 2020. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: An in vitro study. Food Chem 326.
Ke, J.Y., Cole, R.M., Hamad, E.M., Hsiao, Y.H., Cotten, B.M., Powell, K.A., Belury, M.A., 2016. Citrus flavonoid, naringenin, increases locomotor activity and reduces diacylglycerol accumulation in skeletal muscle of obese ovariectomized mice. Mol Nutr Food Res 60, 313–324.
Koriem, K.M.M., Arbid, M.S., Emam, K.R., 2014. Therapeutic effect of pectin on octylphenol induced kidney dysfunction, oxidative stress and apoptosis in rats. Environ Toxicol Pharmacol 38.
Kumar, A., Chauhan, G.S., 2010. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydr Polym 82, 454–459.
Le Bourvellec, C., Renard, C.M.G.C., 2012. Interactions between polyphenols and macromolecules: Quantification methods and mechanisms. Crit Rev Food Sci Nutr.
Li, M.M., Chen, Y.T., Ruan, J.C., Wang, W.J., Chen, J.G., Zhang, Q.F., 2023. Structure-activity relationship of dietary flavonoids on pancreatic lipase. Curr Res Food Sci 6.
Liu, F., Ma, C., McClements, D.J., Gao, Y., 2017. A comparative study of covalent and non-covalent interactions between zein and polyphenols in ethanol-water solution. Food Hydrocoll 63, 625–634.
Macarro, M.S., Rodríguez, J.P.M., Morell, E.B., Pérez-Piñero, S., Victoria-Montesinos, D., García-Muñoz, A.M., García, F.C., Sánchez, J.C., López-Román, F.J., 2020. Effect of a combination of citrus flavones and flavanones and olive polyphenols for the reduction of cardiovascular disease risk: An exploratory randomized, double-blind, placebo-controlled study in healthy subjects. Nutrients 12.
Martinez-Gonzalez, A.I., Alvarez-Parrilla, E., Díaz-Sánchez, Á.G., de la Rosa, L.A., Núñez-Gastélum, J.A., Vazquez-Flores, A.A., Gonzalez-Aguilar, G.A., 2017. In vitro inhibition of pancreatic lipase by polyphenols: A kinetic, Fluorescence spectroscopy and molecular docking study. Food Technol Biotechnol 55, 519–530.
Mechchate, H., Es-safi, I., Haddad, H., Bekkari, H., Grafov, A., Bousta, D., 2021. Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. Journal of Nutritional Biochemistry 88.
Mercado-Mercado, G., de la Rosa, L.A., Alvarez-Parrilla, E., 2020. Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J Mol Struct 1199.
Mita, S.R., Husni, P., Putriana, N.A., Maharani, R., Hendrawan, R.P., Dewi, D.A., 2024. A Recent Update on the Potential Use of Catechins in Cosmeceuticals. Cosmetics.
Nagao, T., Meguro, S., Hase, T., Otsuka, K., Komikado, M., Tokimitsu, I., Yamamoto, T., Yamamoto, K., 2009. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity 17, 310–317.
Oliveira, D.M., Hoshino, É.P., Mota, T.R., Marchiosi, R., Ferrarese-Filho, O., dos Santos, W.D., 2020. Modulation of cellulase activity by lignin-related compounds. Bioresour Technol Rep 10.
Panche, A.N., Diwan, A.D., Chandra, S.R., 2016. Flavonoids: An overview. J Nutr Sci.
Patel, V.B., Chatterjee, S., Dhoble, A.S., 2022. A review on pectinase properties, application in juice clarification, and membranes as immobilization support. J Food Sci.
Qie, X., Wu, Y., Chen, Y., Liu, C., Zeng, M., Qin, F., Wang, Z., Chen, J., He, Z., 2021. Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems. Food Research International 140.
Qin, R., Xiao, K., Li, B., Jiang, W., Peng, W., Zheng, J., Zhou, H., 2013. The combination of catechin and epicatechin gallate from fructus crataegi potentiates β-lactam antibiotics against Methicillin-Resistant Staphylococcus aureus (MRSA) in vitro and in vivo. Int J Mol Sci 14, 1802–1821.
Slavova-Kazakova, A., Janiak, M.A., Sulewska, K., Kancheva, V.D., Karamać, M., 2021. Synergistic, additive, and antagonistic antioxidant effects in the mixtures of curcumin with (−)-epicatechin and with a green tea fraction containing (−)-epicatechin. Food Chem 360.
Smeriglio, A., Iraci, N., Denaro, M., Mandalari, G., Giofrè, S.V., Trombetta, D., 2023. Synergistic Combination of Citrus Flavanones as Strong Antioxidant and COX-Inhibitor Agent. Antioxidants 12.
Stamogiannou, I., Van Camp, J., Smagghe, G., Van de Walle, D., Dewettinck, K., Raes, K., 2021. Impact of phenolic compound as activators or inhibitors on the enzymatic hydrolysis of cellulose. Int J Biol Macromol 186, 174–180.
Stevens-Barrón, J.C., Wall-Medrano, A., Álvarez-Parrilla, E., Olivas-Armendáriz, I., Astiazaran-García, H., Robles-Zepeda, R.E., De la Rosa, L.A., 2022. Synergistic Interactions between Tocol and Phenolic Extracts from Different Tree Nut Species against Human Cancer Cell Lines. Molecules 27.
Tian, Y., Jiang, Y., Ou, S., 2013. Interaction of cellulase with three phenolic acids. Food Chem 138, 1022–1027.
Tsujita, T., Sumiyosh, M., Han, L.-K., Fujiwara, T., Tsujita3, J., Okuda, H., 2003. Inhibition of Lipase Activities by Citrus Pectin, I Nutr Sci Vitaminol.
Tucker, G., Yin, X., Zhang, A., Wang, M., Zhu, Q., Liu, X., Xie, X., Chen, K., Grierson, D., 2017. Ethylene. Food Quality and Safety.
Vaidya, B.K., Singhal, R.S., 2008. Use of insoluble yeast β-glucan as a support for immobilization of Candida rugosa lipase. Colloids Surf B Biointerfaces 61, 101–105.
Wei, K., Wang, G.Q., Bai, X., Niu, Y.F., Chen, H.P., Wen, C.N., Li, Z.H., Dong, Z.J., Zuo, Z.L., Xiong, W.Y., Liu, J.K., 2015. Structure-Based Optimization and Biological Evaluation of Pancreatic Lipase Inhibitors as Novel Potential Antiobesity Agents. Nat Prod Bioprospect 5, 129–157.
Yakaiah, V., Dakshinamoorthi, A., Sudha, T.S., 2021. Novel Aspects in Inhibiting Pancreatic Lipase with Potential New Compound from Nutmeg in Connection with Obesity – In Vitro, In Silico, In Vivo and Ex Vivo Studies. Maedica - A Journal of Clinical Medicine 16.
Yang, S.S., Cheng, K.T., Lin, Y.S., Liu, Y.W., Hou, W.C., 2004. Pectin hydroxamic acids exhibit antioxidant activities in vitro. J Agric Food Chem 52, 4270–4273.
Zhang, L., McClements, D.J., Wei, Z., Wang, G., Liu, X., Liu, F., 2020. Delivery of synergistic polyphenol combinations using biopolymer-based systems: Advances in physicochemical properties, stability and bioavailability. Crit Rev Food Sci Nutr.
Zhao, J., Chen, H., 2014. Stimulation of cellulases by small phenolic compounds in pretreated stover. J Agric Food Chem 62, 3223–3229.
Zhou, M., Bi, J., Chen, J., Wang, R., Richel, A., 2021. Impact of pectin characteristics on lipid digestion under simulated gastrointestinal conditions: Comparison of water-soluble pectins extracted from different sources. Food Hydrocoll 112.
Zhu, R., Wang, C., Zhang, L., Wang, Y., Chen, G., Fan, J., Jia, Y., Yan, F., Ning, C., 2019. Pectin oligosaccharides from fruit of Actinidia arguta: Structure-activity relationship of prebiotic and antiglycation potentials. Carbohydr Polym 217, 90–97.

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)