Evaluación de la actividad antimicrobiana y antioxidante de polifenoles de semillas de macambo (Theobroma bicolor)
DOI:
https://doi.org/10.18633/biotecnia.v27.2672Palabras clave:
Theobroma bicolor, polifenoles, actividad antioxidante, actividad antimicrobianaResumen
Esta investigación tuvo como objetivo evaluar las propiedades antimicrobianas y antioxidantes de los polifenoles extraídos de la semilla de macambo (Theobroma bicolor), mediante dos métodos de extracción: ultrasonido y agitación, aplicando dos fuentes para el extracto: Semillas, cáscara y cotiledón, bajo tres soluciones hidroalcohólicas (1:3, 1:1, 3:1). Se encontró que el tratamiento de maceración por agitación con una proporción hidroalcohólica de 1:3 fue el más efectivo, logrando mayores rendimientos de extracción tanto de la cáscara (60,35 %) como del cotiledón (68,06 %). Además, se presentó un alto contenido de polifenoles y una significativa actividad antioxidante para ambas fuentes de extracto, destacando el potencial de los polifenoles de Macambo como antioxidantes naturales. Se observó alto contenido de polifenoles en los extractos de cáscara (17,31 mg EAG/g) y cotiledón (10,40 mg EAG/g) bajo maceración por agitación y ultrasonido, respectivamente, en relación hidroalcohólica 1:3. los extractos mostraron una significativa actividad antioxidante, especialmente en cáscara (23119,24 µmol ET/100 g) y cotiledón (96943,78 µmol ET/100 g) por ultrasonido en la misma relación solvente. La actividad antimicrobiana evaluada contra Salmonella enterica y E. coli demostró valores de inhibición de hasta 88,97 %, resultando útil para el desarrollo de conservantes o tratamientos antimicrobianos y una alternativa para el aprovechamiento de recursos naturales.
Descargas
Citas
Alodaini, D., Hernandez-Rocamora, V., Boelter, G., Ma, X., Alao, M. B., Doherty, H. M., Bryant, J. A., Moynihan, P., Moradigaravand, D., Glinkowska, M., Vollmer, W., & Banzhaf, M. (2024). Reduced peptidoglycan synthesis capacity impairs growth of E. coli at high salt concentration. MBio, 15(4), 1. https://doi.org/10.1128/mbio.00325-24
Andishmand, H., Masoumi, B., Torbati, M., Homayouni-Rad, A., Azadmard-Damirchi, S., & Ham-ishehkar, H. (2023). Ultrasonication/dynamic maceration-assisted extraction method as a novel combined approach for recovery of phenolic compounds from pomegranate peel. Food Science and Nutrition, 11(11), 7160–7171. https://doi.org/10.1002/fsn3.3642
Attree, R., Du, B., & Xu, B. (2015). Distribution of phenolic compounds in seed coat and cotyledon, and their contribution to antioxidant capacities of red and black seed coat peanuts (Arachis hypogaea L.). Industrial Crops and Products, 67, 448–456. https://doi.org/10.1016/j.indcrop.2015.01.080
Baran, A., Kwiatkowska, A., & Potocki, L. (2023). Antibiotics and Bacterial Resistance—A Short Story of an Endless Arms Race. International Journal of Molecular Sciences, 24(6), 5777–5810. https://doi.org/10.3390/ijms24065777
Benítez-Benítez, R., Sarria-Villa, R. A., Gallo-Corredor, J. A., Pérez Pacheco, N. O., Álvarez Sandoval, J. H., & Giraldo Aristizabal, C. I. (2020). Obtención y rendimiento del extracto etanólico de dos plantas medicinales. Revista Facultad de Ciencias Básicas, 15(1), 31–40. https://doi.org/10.18359/rfcb.3597
Burnaz, N. A. (2021). Evaluation of ultrasonication and agitation extraction methods at different con-ditions on the phenolic composition and antioxidant activities of mammillaria prolifera. Indian Journal of Pharmaceutical Sciences, 83(5), 963–973. https://doi.org/10.36468/pharmaceutical-sciences.849
Cacique, A. P., Barbosa, É. S., de Pinho, G. P., & Silvério, F. O. (2020). Maceration extraction conditions for determining the phenolic compounds and the antioxidant activity of catharanthus roseus (L.) g. don. Ciencia e Agrotecnologia, 44. https://doi.org/10.1590/1413-7054202044017420
Cervantes-Valencia, M. E., López-Valdez, N., Rojas-Lemus, M., González-Villalva, A., Mo-rales-Ricardes, G., Bizarro-Nevares, P., Ustarroz-Cano, M., Salgado-Hernández, J. Á., Mendo-za-Martínez, S., & Lamas-Orozco, L. M. (2024). Natural Antioxidants and their Effect Against Oxidative Stress Caused by Particulate Matter Pollution. Revista de La Facultad de Medicina UNAM, 67(4), 7–20. https://doi.org/10.22201/fm.24484865e.2024.67.4.02
Cruz, J. E. R. da, Costa, J. L. G., Teixeira, T. A., Oliveira e Freitas, G. R., Gomes, M. de S., & Morais, E. R. (2022). Phenolic compounds, antioxidant and antibacterial activity of extract from leaves and bark of Stryphnodendron adstringens (Mart.) Coville. Revista Ciência Agronômica, 53. https://doi.org/10.5935/1806-6690.20220049
Dominguez-López, I., Pérez, M., & Lamuela-Raventós, R. M. (2023). Total (poly)phenol analysis by the Folin-Ciocalteu assay as an anti-inflammatory biomarker in biological samples. Critical Reviews in Food Science and Nutrition, 64(27), 10048–10054. https://doi.org/10.1080/10408398.2023.2220031
Dong, J. W., Cai, L., Xing, Y., Yu, J., & Ding, Z. T. (2015). Re-evaluation of ABTS·G+ assay for total antioxidant capacity of natural products. Natural Product Communications, 10(12), 2169–2172. https://doi.org/10.1177/1934578x1501001239
El Tannir, H., Houhou, D., Debs, E., Koubaa, M., Jammoul, A., Azakir, B., Khalil, M. I., El Darra, N., & Louka, N. (2024). Optimization of Aqueous Extraction of Polyphenols from Cuminum cyminum Seeds Using Response Surface Methodology and Assessment of Biological Activity. BioTech, 13(1), 1–14. https://doi.org/10.3390/biotech13010007
Furtado, G. L., & Medeiros, A. A. (1980). Single-disk diffusion testing (Kirby-Bauer) of susceptibility of Proteus mirabilis to chloramphenicol: Significance of the intermediate category. Journal of Clin-ical Microbiology, 12(4), 550–553. https://doi.org/10.1128/jcm.12.4.550-553.1980
Galgano, F., Tolve, R., Scarpa, T., Caruso, M. C., Lucini, L., Senizza, B., & Condelli, N. (2021). Ex-traction kinetics of total polyphenols, flavonoids, and condensed tannins of lentil seed coat: Comparison of solvent and extraction methods. Foods, 10(8), 1810–1828. https://doi.org/10.3390/foods10081810
Haido, M. H., Matti, A. H., & Taher, S. M. (2024). Optimization of Extraction Conditions of Bioactive Compounds From Kurdistan Species Urtica dioica. Cureus, 16(5), e61146. https://doi.org/10.7759/cureus.61146
Heckmann, M., Stadlbauer, V., Drotarova, I., Gramatte, T., Feichtinger, M., Arnaut, V., Atzmüller, S., Schwarzinger, B., Röhrl, C., Blank-Landeshammer, B., & Weghuber, J. (2024). Identification of Oxidative-Stress-Reducing Plant Extracts from a Novel Extract Library—Comparative Analysis of Cell-Free and Cell-Based In Vitro Assays to Quantitate Antioxidant Activity. Antioxidants, 13(3), 1–15. https://doi.org/10.3390/antiox13030297
Hernández-Domínguez, E., Espinosa-Solís, V., Hernández-Nava, R., García-Barrientos, R., Suarez Ro-driguez, C., Gallardo-Bernal, P., Figueroa-Wences, V., & Sánchez-Mundo, M. (2024). Valorization of Cocoa Bean Shell Agro-Industrial Residues for Producing Functional Hot Water Infusions. Processes, 12(12), 1–17. https://doi.org/10.3390/pr12122905
Islam, N. S., & Dhaubhadel, S. (2023). Proanthocyanidin biosynthesis and postharvest seed coat dark-ening in pinto bean. Phytochemistry Reviews, 35(1), 1–18. https://doi.org/10.1007/s11101-023-09895-8
Keivani, N., Piccolo, V., Marzocchi, A., Maisto, M., Tenore, G. C., & Summa, V. (2024). Optimization and Validation of Procyanidins Extraction and Phytochemical Profiling of Seven Herbal Matrices of Nutraceutical Interest. Antioxidants, 13(5), 1–25. https://doi.org/10.3390/antiox13050586
Kumar, K., Srivastav, S., & Sharanagat, V. S. (2021). Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry, 70, 1. https://doi.org/10.1016/j.ultsonch.2020.105325
Lim, Y. J., Kwon, S. J., Qu, S., Kim, D. G., & Eom, S. H. (2021). Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Anti-oxidants, 10(3), 1–16. https://doi.org/10.3390/antiox10030353
Ma, Y., & Chen, F. (2023). Plant Protein Heat-Induced Gels: Formation Mechanisms and Regulatory Strategies. Coatings, 13(11), 1–19. https://doi.org/10.3390/coatings13111899
Naughton, P. J., Mikkelsen, L. L., & Jensen, B. B. (2001). Effects of Nondigestible Oligosaccharides on Salmonella enterica Serovar Typhimurium and Nonpathogenic Escherichia coli in the Pig Small Intestine in Vitro. Applied and Environmental Microbiology, 67(8), 3391–3395. https://doi.org/10.1128/AEM.67.8.3391-3395.2001
Peng, S., Zhu, M., Li, S., Ma, X., & Hu, F. (2023). Ultrasound-assisted extraction of polyphenols from Chinese propolis. Frontiers in Sustainable Food Systems, 7, 1–15. https://doi.org/10.3389/fsufs.2023.1131959
Punchihewage-Don, A. J., Ranaweera, P. N., & Parveen, S. (2024). Defense mechanisms of Salmonella against antibiotics: a review. Frontiers in Antibiotics, 3(1), 1–15. https://doi.org/10.3389/frabi.2024.1448796
Ramírez, L. S., & Marín Castaño, D. (2009). Metodologías para evaluar in vitro la actividad antibacte-riana de compuestos de origen vegetal. Scientia Et Technica, 15(42), 263–268. https://www.redalyc.org/articulo.oa?id=84916714049
Reddy, B. S., Reddy, B. P., Raghavulu, S. V., Ramakrishna, S., Venkateswarlu, Y., & Diwan, P. V. (2008). Evaluation of antioxidant and antimicrobial properties of Soymida febrifuga leaf extracts. Phytot-herapy Research, 22(7), 943–947. https://doi.org/10.1002/ptr.2433
Salazar, R. R., Carrizales, carolina T., Pérez, A. G., Castillejos, G. R., & Nájera, G. C. (2021). Compa-ración proximal en cacao (Theobroma cacao) y pataxte (T. bicolor) de tabasco y Chiapas, México. POLIBOTÁNICA, 26(52), 135–149. https://doi.org/10.18387/polibotanica.52.10
Sanam, M. U. E., Detha, A. I. R., & Rohi, N. K. (2022). Detection of antibacterial activity of lactic acid bacteria, isolated from Sumba mare’s milk, against Bacillus cereus, Staphylococcus aureus, and Escherichia coli. Journal of Advanced Veterinary and Animal Research, 9(1), 53–58. https://doi.org/10.5455/javar.2022.i568
Soni, J., Sinha, S., & Pandey, R. (2024). Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Frontiers in Microbiology, 15(1), 1–14. https://doi.org/10.3389/fmicb.2024.1370818
Spector, M. P., & Kenyon, W. J. (2012). Resistance and survival strategies of Salmonella enterica to environmental stresses. Food Research International, 45(2), 455–481. https://doi.org/https://doi.org/10.1016/j.foodres.2011.06.056
Stan, D., Enciu, A. M., Mateescu, A. L., Ion, A. C., Brezeanu, A. C., Stan, D., & Tanase, C. (2021). Natural Compounds with Antimicrobial and Antiviral Effect and Nanocarriers Used for Their Transportation. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.723233
Tafurt, G., Suarez, O., Lares, M. del C., Álvarez, C., & Liconte, N. (2021). Capacidad antioxidante de un chocolate oscuro de granos cacao orgánico sin fermentar. Revista Digital de Postgrado, 10(1), 1–8. https://doi.org/10.37910/RDP.2021.10.1.e280
Takó, M., Kerekes, E. B., Zambrano, C., Kotogán, A., Papp, T., Krisch, J., & Vágvölgyi, C. (2020). Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants, 9(2), 165–186. https://doi.org/10.3390/antiox9020165
Tavares, T., Antunes, J., Padrão, J., Ribeiro, A., Zille, A., Amorim, M. T., Ferreira, F., & Felgueiras, H. (2020). Activity of Specialized Biomolecules against Gram-Positive and Gram-Negative Bacteria. Antibiotics, 9(6), 314–329. https://doi.org/10.3390/antibiotics9060314
Teffane, M., Boudries, H., Bey, M., Kadi, A., & Farid, B. (2021). Effect of Solvent Type, Extraction Temperature, Agitation Speed and Microwave Power on Phenolic Compound Extraction and An-tioxidant Activity of Apricot Kernels (Prunus armeniaca L.). Current Bioactive Compounds, 17(1). https://doi.org/10.2174/1573407217666210215085507
Xia, B.-H., Yu, Z.-L., Lu, Y.-A., Liu, S.-J., Li, Y.-M., Xie, M.-X., & Lin, L.-M. (2024). Green and Effi-cient Extraction of Phenolic Components from Plants with Supramolecular Solvents: Experimental and Theoretical Studies. Molecules, 29(9), 1–19. https://doi.org/10.3390/molecules29092067
Yu, M., Gouvinhas, I., Rocha, J., & Barros, A. I. R. N. A. (2021). Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Re-ports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-89437-4
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)