Estudio de la concentración óptima de fósforo de la estruvita como fertilizante en suelos con mineralogía contrastada

Autores/as

  • Leticia Angélica Flores Pérez Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Ciudad Universitaria, Av. Sn. Claudio y 18 sur, Col. Jardines de San Manuel, 72570 Puebla, Pue., México
  • Roberto García Ruíz Universidad de Jaén. Departamento de Biología Animal, Vegetal y Ecología, Campus Las Lagunillas S/N, 23071, Jaén, Jaén, España
  • Victor Aranda Sanjuán Universidad de Jaén. Departamento de Biología Animal, Vegetal y Ecología, Campus Las Lagunillas S/N, 23071, Jaén, Jaén, España
  • Julio A. Calero González Universidad de Jaén. Departamento de Biología Animal, Vegetal y Ecología, Campus Las Lagunillas S/N, 23071, Jaén, Jaén, España

DOI:

https://doi.org/10.18633/biotecnia.v21i2.910

Palabras clave:

estruvita, superfosfato, granodiorita, marga, supervivencia

Resumen

La aplicación de la estruvita y otros fosfatos procedentes del reciclado de residuos de diversa índole con potencial fertilizante es ya una realidad. Sin embargo, no se conoce aún en profundidad su valor real como fertilizante en suelos con mineralogía contrastada y la concentración óptima en el desarrollo de las plantas. En este trabajo se determinó la concentración óptima del fertilizante para el desarrollo adecuado de Lepidium sativum como planta modelo en suelos de propiedades contrastantes; olivares sobre margas (pH 8.14) y granodioritas (pH 6.74), con concentraciones crecientes de estruvita y superfosfato (0 a 32 μg P mL-1). Los resultados obtenidos indican que las concentraciones óptimas para que la planta alcance su desarrollo óptimo está entre 0 a 6 ppm en suelos ácidos con estruvita, mientras que en suelos básicos se presenta un efecto inhibitorio en el desarrollo, así mismo a mayores concentraciones de fertilizante las plantas disminuyen su supervivencia con los dos fertilizantes estudiados.

Citas

Boluda, R., Roca-Pérez, L. y Marimón, L. 2011. Soil plate bioassay: An effective method to determine ecotoxicological risks. Chemosphere. 84: 1-8. In: https://doi.org/10.1016/j.chemosphere.2011.02.013

Cabeza, R., Steingrobe, B., Römer, W. y Claassen, N. 2011. Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutrient Cycling in Agroecosystems. 91: 173-184. In: https://doi.org/10.1007/s10705-011-9454-0

El Fels, L., Zamama, M., El Asli, A. y Hafidi, M. 2014. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. International Biodeterioration & Biodegradation. 87: 128-137. In: https://doi.org/10.1016/j.ibiod.2013.09.024

Erel, R., Dag, A., Ben-Gal, A., Schwartz, A. y Yermiyahu, U. 2008. Flowering and fruit set of olive trees in response to Nitrogen, Phosphorus, and Potassium. Journal of the American Society for Horticultural Science. 133(5): 639-647.

González-Poncer, R. y García-López, D. 2007. Evaluation of struvite as a fertilizer: a comparison with traditional P sources. Agrochimica. 51: 30-308. In: https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=28305&content=PDF

Huijun, W., Yongliang, Z., Zengwei, Y. y Liangmin, G. 2016. A review of phosphorus management through the food system: identifying the roadmap to ecological agriculture. Journal of Cleaner Production. 114: 45-54. In: https://doi.org/10.1016/j.jclepro.2015.07.073

Johnston, A. y Richards, I. 2003. Effectiveness of different precipitated phosphates as phosphorus sources for plants. Soil Use Management. 19: 45-49. In: https://doi.org/10.1111/j.1475-2743.2003.tb00278.x

Kameswara, N., Hanson, J., Ehsan, M., Ghosh, K., Nowell, D. y Larinde, M. 2007. Manual of seed handling in genebanks. Handbooks for Genebanks No. 8. Bioversity International, Rome, Italy.

Kataki, S. y Baruah, D. 2018. Prospects and issues of phosphorus recovery as struvite from waste streams. Handbook of Environmental Materials Management. 1-50. In: https://doi.org/10.1007/978-3-319-58538-3_19-1

Kataki, S., West, H., Clarke, M. y Baruah, D. 2016. Phosphorus recovery as struvite from farm, municipal and industrial waste: Feedstock suitability, methods and pre-treatments. Waste Management. 49: 437-454. In: https://doi.org/10.1016/j.wasman.2016.01.003.

Khan, N., Clark, I., Sánchez-Monedero, M., Shea, S., Meier, S. y Bolan, N. 2014. Maturity indices in co-composting of chicken manure and sawdust with Biochar. Bioresource Technology. 168: 245-251. https://10.1016/j.biortech.2014.02.123

Maaß, O., Grundmann, P. y Bock un Polach, C. 2014. Added-value from innovative value chains by establishing nutrient cycles via struvite. Resources, Conservation and Recycling. 87: 126- 136. In: https://doi.org/10.1016/j.resconrec.2014.03.012

Massey, M., Davis, J., Ippolito, J. y Sheffield, R. 2009. Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agronomy Journal. 101(2): 323- 329.

Mbarka, G., Mongi, F. y Sami, S. 2010. Bioassay and use in irrigation of untreated and treated wastewaters from phosphate fertilizer industry. Ecotoxicology and Environmental Safety. 73: 932-938. In: https://doi.org/10.1016/j.ecoenv.2009.12.021

Metson, G., MacDonald, G., Haberman, D., Nesme, T. y Bennett, E. 2016. Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Science of the Total Environment. 542: 1117-1126. In: http://dx.doi.org/10.1016/j.scitotenv.2015.08.047

Mustafa, N. y Gary, M. 2014. The Freundlich adsorcion isotherm constants and prediction of phosphorus bioavailability as affected by different phosphorus sources in two Kansas soils. Chemosphere. 99: 72-80. In: https://doi.org/10.1016/j.chemosphere.2013.10.009

Naveed, A., Soomin, S., Seunggun, W. y Changsix, R. 2017. Struvite recovered from various types of wastewaters: characteristics, soil leaching behaviour, and plant growth. Land Degradation and Development. 29(9): 2864-2879. In: https://doi.org/10.1002/ldr.3010

Ofosu-Budu, G., Hogarh, J., Fobil, J., Quaye, A., Danso, S. y Carboo, D. 2010. Harmonizing procedures for the evaluation of compost maturity in two compost types in Ghana. Resources, Conservation and Recycling. 54: 205-209. In: https://doi.org/10.1016/j.resconrec.2009.08.001

Pastor, L., Mangin, D., Barat, R. y Seco, A. 2008. A pilot-scale study of struvite precipitation in a stirred tank reactor: conditions influencing the process. Bioresources Technology. 99: 6285- 6291. In: https://doi.org/10.1016/j.biortech.2007.12.003

Plaza, C., Sanz, R., Clemente, C., Fernández, J., González, R., Polo, A. y Colmenarejo, M. 2007. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants. Journal of Agricultural and Food Chemistry. 55: 8206-8212. In: https://doi.org/10.1021/jf071563y

Talboys, P., Heppell, J., Roose, T., Healey, J., Jones, D. y Winthers, P. 2016. Struvite: a slow-release fertilizer for sustainable phosphorus management?. Plant and Soil. 401(1): 109-123. In: https://10.1007/s11104-015-2747-3

Vaneeckhaute, C., Janda, J., Vanrolleghem, P., Tack, F. y Meers, E. 2016. Phosphorus use efficiency of bio-based fertilizers: Bioavailability and fractionation. Pedosphere. 26(3): 310- 325. In: https://doi.org/10.1016/S1002-0160(15)60045-5

Vogel, T., Nelles, M. y Eichler-Löbermann, B. 2015. Phosphorus application with recycled products from municipal waste water to different crop species. Ecological Engineering. 83: 466-475. In: https://doi.org/10.17221/513/2017-PSE

Wang, Y., Zhang, T., Hu, Q. y Tan, C. 2016. Phosphorus source coefficient determination for quantifying phosphorus loss risk of various animal manures. Geoderma. 278: 23-31. In: https://doi.org/10.1016/j.geoderma.2016.05.008

Zucconi, F., Pera, A., Forte, M. y De Bertoli, M. 1981. Evaluating toxicity in immature compost. Biocycle. 22: 54–57.

Descargas

Publicado

2019-04-01

Cómo citar

Flores Pérez, L. A., García Ruíz, R., Aranda Sanjuán, V., & Calero González, J. A. (2019). Estudio de la concentración óptima de fósforo de la estruvita como fertilizante en suelos con mineralogía contrastada. Biotecnia, 21(2), 78–82. https://doi.org/10.18633/biotecnia.v21i2.910

Número

Sección

Artículos originales