Cytotoxicidad de nanopartículas a base de poli (L-glutamato de g-bencilo) cuando es expresada en molaridad

Autores/as

  • An Young Sarahi Taylor-Castillo Univ. Paris Sud, Université Paris Saclay, UMR CNRS 8612, Institut Galien, 92296 Châtenay-Malabry Cedex, France Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora, CP 83000, Mexico
  • Gilles Ponchel Univ. Paris Sud, Université Paris Saclay, UMR CNRS 8612, Institut Galien, 92296 Châtenay-Malabry Cedex, France
  • María Elisa Martínez-Barbosa Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, Hermosillo, Sonora, CP 83000, Mexico

DOI:

https://doi.org/10.18633/biotecnia.v21i2.940

Palabras clave:

MTT, molaridad, nanopartículas PBLG, morfología

Resumen

En este trabajo se propone un método para calcular la concentración molar en base al número de nanopartículas poliméricas (Mnps) contenidas en una suspensión coloidal para ser utilizada en estudios de MTT, permitiendo comparar el impacto del número, tamaño y morfología de las nanopartículas en la determinación de la citotoxicidad. Para ello, dos derivados de PBLG, PBLG35-bz y PBLG35-PEG5, fueron sintetizados mediante polimerización por apertura aniónica del anillo γ-bencilo-L-glutamato N-carboxianhídrido. Posteriormente, se prepararon nanopartículas por nanoprecipitación. El sistema PBLG35-bz presenta morfología esférica y el sistema PBLG35-PEG5 morfología de elipsoide prolato. Para cada sistema de nanopartículas, se midió el eje largo y eje corto y se calculó la relación de aspecto y el diámetro equivalente. La Mnps se determinó tomando en cuenta el número de nanopartículas presentes en un determinado volumen de suspensión coloidal expresado en litros, y el número de Avogadro. Los resultados de MTT permiten concluir que, debido a las diferencias en las características morfológicas de los sistemas estudiados, el mejor enfoque para la evaluación de la citotoxicidad en nanopartículas de PBLG es la utilización de la molaridad en base al número de nanopartículas, en lugar de concentración en base a masa de polímero (μg/mL).

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Anderson, J.M., H., R., Praphulla, B. K., H. P., D., Anne, H., R. F., O., U. Prasad, K., Sableman, E. E., Schlag, G., Spilizewski, K. L., Urry, D. W. and F., W. D. 1985. Poly-a-Amino Acids as Biomedical Polymers. En: Biocompatibility of Tissue Analogs. F., W.D. (ed.) Boca Raton, CRC Press, Inc. Florida.

Brigger, I., Dubernet, C. y Couvreur, P. 2002. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews. 54(5): 631-651.

Burton, J.D. 2005. The MTT Assay to Evaluate Chemosensitivity in Blumenthal, R.D. (ed.) Chemosensitivity: Volume 1 In Vitro Assays. Totowa, NJ: Humana Press: 69-78.

Cauchois, O., Segura-Sanchez, F. y Ponchel, G. 2013. Molecular weight controls the elongation of oblate-shaped degradable poly(γ-benzyl-L-glutamate) nanoparticles, International Journal of Pharmaceutics. 452(1–2): 292-299.

Cormode, D.P., Skajaa, T., Fayad, Z.A. y Mulder, W.J.M. 2009. Nanotechnology in Medical Imaging Probe Design and Applications. Arteriosclerosis Thrombosis and Vascular Biology. 29(7): 992-1000.

Couvreur, P. y Vauthier, C. 2006. Nanotechnology: Intelligent Design to Treat Complex Disease. Pharmaceutical Research. 23(7): 1417-1450.

de Miguel, L., Noiray, M., Surpateanu, G., Iorga, B.I. y Ponchel, G. 2014. Poly(γ-benzyl-L-glutamate)-PEG-alendronate multivalent nanoparticles for bone targeting. International Journal of Pharmaceutics. 460(1–2): 73-82.

Duchêne, D., Ponchel, G. y Wouessidjewe, D.1999. Cyclodextrins in targeting - Application to nanoparticles. Advanced Drug Delivery Reviews. 36(1): 29-40.

Fattal, E. y Vauthier, C. 2013. Nanoparticles as Drug Delivery Systems. Encyclopedia of Pharmaceutical Science and Technology, Fourth Edition: Vol. null: Taylor & Francis.

Fontaine, L., Ménard, L., Brosse, J.C., Sennyey, G. y Senet, J.P. 2001. New polyurethanes derived from amino acids: Synthesis and characterization of α,ω-diaminooligopeptides by ring-opening polymerization of glutamate N-carboxyanhydrides. Reactive and Functional Polymers. 47(1): 11-21.

Fu, J., Wang, W., Liu, Y.H., Lu, H. y Luo, Y. 2011. In vitro anti-angiogenic properties of LGD1069, a selective retinoid X-receptor agonist through down-regulating Runx2 expression on Human endothelial cells. BMC Cancer.11: 227-227.

Gref, R., Luck, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T. y Muller, R.H. 2000. Stealth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B-Biointerfaces. 18(3-4): 301-313.

Jiang, Y., Shan, S., Gan, T., Zhang, X., Lu, X., Hu, H.U., Wu, Y., Sheng, J. y Yang, J.U.N. 2014. Effects of cisplatin on the contractile function of thoracic aorta of Sprague-Dawley rats. Biomedical Reports. 2(6): 893-897.

Kang, T., Zhu, Q., Wei, D., Feng, J., Yao, J., Jiang, T., Song, Q., Wei, X., Chen, H., Gao, X. y Chen, J. 2017. Nanoparticles Coated with Neutrophil Membranes Can Effectively Treat Cancer Metastasis. ACS Nano. 11(2): 1397-1411.

Kong, B., Seog, J.H., Graham, L.M. y Lee, S.B. 2011. Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine. 6(5): 929-941.

Larionova, N.I., Duchêne, D., Couvreur, P., Ollivon, M. y Gref, R. 2008. Development of micro- and nanosystems for drug delivery. Russian Journal of General Chemistry. 78(11): 2220- 2229.

Luhmann, T., Rimann, M., Bitterman, A.G. y Hall, H. 2008. Cellular uptake and intracellular pathways of PLL-g-PEG-DNA nanoparticles. Bioconjugate Chemistry. 19(9): 1907-1916.

Martínez-Barbosa, M.E., Bouteiller, L., Cammas-Marion, S., Montembault, V., Fontaine, L. y Ponchel, G. 2008. Synthesis and ITC characterization of novel nanoparticles constituted by poly(gamma-benzyl L-glutamate)-beta-cyclodextrin. Journal of Molecular Recognition. 21(3): 169-178.

Martínez-Barbosa, M.E. 2006. Synthése de dérivés du poly(L-glutamate de γ-benzyle). Préparation et caractérisation de nanoparticules multifonctionnelles. Thèse Doctorale. Université Paris XI, Faculté de Pharmacie, Châtenay-Malabry, France.

Martínez-Barbosa, M.E., Montembault, V., Cammas-Marion, S., Ponchel, G. y Fontaine, L. 2007. Synthesis and characterization of novel poly(gamma-benzyl-L-glutamate) derivatives tailored for the preparation of nanoparticles of pharmaceutical interest. Polymer International. 56(3): 317- 324.

Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N. y Couvreur, P. 2013. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews. 42(3): 1147-1235.

Patil, Y.B., Swaminathan, S.K., Sadhukha, T., Ma, L. and Panyam, J. 2010. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials. 31(2): 358-365.

Segura-Sánchez, F., Montembault, V., Fontaine, L., Martínez- Barbosa, M.E., Bouchemal, K. y Ponchel, G. 2010. Synthesis and characterization of functionalized poly(3-benzyl-L-glutamate) derivates and corresponding nanoparticles preparation and characterization. International Journal of Pharmaceutics. 387(1-2): 244-252.

Shiau, C.C. y Labes, M.M. 1989. Correlation of pitch with concentration and molecular weight in poly(gamma benzyl glutamate) lyophases. Macromolecules. 22(1): 328-332.

Tiwari, M. y Bellare, J. 2012. Polymer-Based Nanoparticulate Systems as Versatile Agents in the Prognosis and Therapy of Cancer. Proceedings of the National Academy of Sciences. India Section B: Biological Sciences. 82(1): 37-58.

Tolosa, L., Donato, M.T. y Gómez-Lechón, M.J. 2015. General Cytotoxicity Assessment by Means of the MTT Assay. in Vinken, M. & Rogiers, V. (eds.) Protocols in In Vitro Hepatocyte Research. New York, NY: Springer New York.

van Meerloo, J., Kaspers, G.J.L. y Cloos, J. 2011. Cell Sensitivity Assays: The MTT Assay. in Cree, I.A. (ed.) Cancer Cell Culture: Methods and Protocols. Totowa, NJ: Humana Press.

Wadell, H. 1935. Volume, Shape, and Roundness of Quartz Particles. The Journal of Geology. 43(3): 250-280.

Zhang, J., Chen, X.G., Huang, L., Han, J.T. y Zhang, X.F. 2012. Self-assembled polymeric nanoparticles based on oleic acid-grafted chitosan oligosaccharide: biocompatibility, protein adsorption and cellular uptake. Journal of Materials Science: Materials in Medicine. 23(7): 1775-1783.

Özcan, İ., Bouchemal, K., Segura-Sánchez, F., Özer, Ö., Güneri, T. y Ponchel, G. 2011. Synthesis and characterization of surface-modified PBLG nanoparticles for bone targeting: In vitro and in vivo evaluations. Journal of Pharmaceutical Sciences. 100(11): 4877-4887.

Descargas

Publicado

2019-04-01

Cómo citar

Taylor-Castillo, A. Y. S., Ponchel, G., & Martínez-Barbosa, M. E. (2019). Cytotoxicidad de nanopartículas a base de poli (L-glutamato de g-bencilo) cuando es expresada en molaridad. Biotecnia, 21(2), 145–154. https://doi.org/10.18633/biotecnia.v21i2.940

Número

Sección

Artículos originales

Métrica