La microbiota del tracto digestivo de camarones peneidos: una perspectiva histórica y estado del arte//The gut microbiota of penaeid shrimp: a historical perspective and state of the art

Autores/as

  • Estefanía Garibay-Valdez Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera a La Victoria km. 0.6, C.P. 83304, Hermosillo, Sonora, México
  • Marcel Martínez-Porchas Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera a La Victoria km. 0.6, C.P. 83304, Hermosillo, Sonora, México https://orcid.org/0000-0003-4074-6731
  • Kadiya Calderón Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0003-3502-6449
  • Teresa Gollas-Galván Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera a La Victoria km. 0.6, C.P. 83304, Hermosillo, Sonora, México https://orcid.org/0000-0002-6952-0907
  • Luis R. Martínez- Córdova Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0002-3684-3398
  • Francisco Vargas-Albores Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera a La Victoria km. 0.6, C.P. 83304, Hermosillo, Sonora, México https://orcid.org/0000-0002-9677-1808
  • Miguel A. Arvayo Centro de Investigación en Alimentación y Desarrollo, A.C, Carretera a La Victoria km. 0.6, C.P. 83304, Hermosillo, Sonora, México

DOI:

https://doi.org/10.18633/biotecnia.v22i1.1119

Palabras clave:

simbiosis, microbiota, metagenoma, tracto digestivo, camarones peneidos, secuenciación, herramientas bioinformáticas, perfil funcional

Resumen

La microbiota del tracto digestivo es diversa y provee grandes beneficios al hospedero; participando en múltiples funciones relacionadas con su estado de salud, nutrición y crecimiento. Recientemente ha cobrado relevancia el estudio del papel de la microbiota en organismos de importancia acuícola, incluyendo a camarones peneidos. Los estudios pioneros en conocer la relación de los microorganismos en el desarrollo de camarones peneidos utilizaron técnicas dependientes de cultivo. A pesar de los novedosos hallazgos, esto representó solo una pequeña fracción del total de la población; sin embargo, estas primeras aproximaciones permitieron vislumbrar el rol relevante de la microbiota en la biología de estos crustáceos. Más tarde, el desarrollo de métodos basados en técnicas moleculares extendió el panorama con nuevos registros de bacterias no cultivables en estos ambientes, elucidando el efecto de diversos factores incluyendo dieta, antibióticos, probióticos, prebióticos y enfermedades sobre la modulación de la microbiota del tracto digestivo. Sin embargo, el desarrollo de técnicas de secuenciación masiva de alto rendimiento, comenzó a proporcionar bases de datos más robustas, permitiendo conocer no solo qué microorganismos están presentes en un organismo dado, sino también conocer sus funciones y roles potenciales. Hasta el momento se cuenta con descripciones de la composición de la microbiota del tracto digestivo de camarones peneidos y del como el manejo de estos microorganimos tiene beneficios en la respuesta productiva y estado de salud; sin embargo, es necesario continuar comprendiendo la relación microbiotahospedero. La presente revisión analiza la situación actual y plantea las perspectivas futuras para el estudio de la microbiota de camarones peneidos.

ABSTRACT

The digestive tract microbiota is diverse and can provide great benefits to the host, participating in multiple functions related to its health, nutrition and growth. Recently, the microbiota study of important aquaculture species including penaeid shrimp has gained relevance. The first research efforts in the knowledge of the relationship between microorganisms and penaeid shrimp development used culture-dependent techniques. In spite of the novel findings, this represented only a small fraction of the total population; however, these first approaches allowed knowing the relevant role of microbiota in the biology of these crustaceans. Later, the development of methods based on molecular techniques, increased the panorama with new records of nonculturable bacteria in these environments, elucidating the effect of diverse factors including diet, antibiotics, probiotics, prebiotics, and disease on the digestive tract microbiota modulation. However, the rise of high throughput sequencing, began providing robust datasets, allowing to know not only which microbes are present in a given organism, but reveal their functions and potential roles. So far, descriptions of the microbiota composition of the digestive tract of penaeid shrimp are available, as well as on how the management of these microorganisms benefits the productive response and health status; however, it is necessary to continue comprehending the microbiota-host relationship. The present review analyzes the current situation and future perspectives in the study of penaeid shrimp microbiota

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Balcázar, J.L., Decamp, O., Vendrell, D., De Blas, I. y Ruiz-Zarzuela, I. 2006. Health and nutritional properties of probiotics in fish and shellfish. Microbial Ecology in Health and Disease. 18:65-70.

Bondad-Reantaso, M., Mcgladdery, East, I. y Subasinghe, R. 2001. Asia diagnostic guide to aquatic animal diseases. Rome, FAO: FAO Fisheries Technical Paper No. 402, Supplement 2.

Bordenstein, S.R. y Theis, K.R. 2015. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biology. 13:e1002226.

Bou, G., Fernández-Olmos, A., García, C., Sáez-Nieto, J.A. y Valdezate, S. 2011. Métodos de identificación bacteriana en el laboratorio de microbiología. Enfermedades Infecciosas y Microbiología Clínica. 29:601-608.

Brunvold, L., Sandaa, R.-A., Mikkelsen, H., Welde, E., Bleie, H. y Bergh, Ø. 2007. Characterisation of bacterial communities associated with early stages of intensively reared cod (Gadus morhua) using Denaturing Gradient Gel Electrophoresis (DGGE). Aquaculture. 272:319-327.

Brusca, R.C. y Brusca, G.J. 2003. Invertebrates. Sunderland, MA: Sinauer Associates, Inc.

Cardona, E., Gueguen, Y., Magre, K., Lorgeoux, B., Piquemal, D., Pierrat, F., Noguier, F. y Saulnier, D. 2016. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiology. 16:157.

Carrillo, F. y González, R. 2000. Control de la digestión en camarones. In En: Avances en Nutrición Acuícola IV, eds. Civera, R., Pérez, C.J., Ricque, D. y Cruz, L.E., pp 138-148. La Paz, Baja California Sur, Mexico: Memorias del IV Simposium Internacional de Nutrición Acuícola.

Case, R.J., Boucher, Y., Dahllof, I., Holmstrom, C., Doolittle, W.F. y Kjelleberg, S. 2007. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Applied Environmental Microbiology Journal. 73:278-288.

Clements, K.D., Angert, E.R., Montgomery, W.L. y Choat, J.H. 2014. Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology. 23:1891-1898.

Cornejo-Granados, F., Gallardo-Becerra, L., Leonardo-Reza, M., Ochoa-Romo, J.P. y Ochoa-Leyva, A. 2018. A meta-analysis reveals the environmental and host factors shaping the structure and function of the shrimp microbiota. PeerJ. 6:e5382.

Cornejo-Granados, F., Lopez-Zavala, A.A., Gallardo-Becerra, L., Mendoza-Vargas, A., Sánchez, F., Vichido, R., Brieba, L.G., Viana, M.T., Sotelo-Mundo, R.R. y Ochoa-Leyva, A. 2017. Microbiome of pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Scientific Reports. 7:11783.

Chaiyapechara, S., Rungrassamee, W., Suriyachay, I., Kuncharin, Y., Klanchui, A., Karoonuthaisiri, N. y Jiravanichpaisal, P. 2012. Bacterial community associated with the intestinaltract of P. monodon in commercial farms. Microbial Ecology. 63:938- 953.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P. y Bettman, B. 2008. Real-time DNA sequencing from single polymerase molecules. Science. 323:133-138.

Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. y Niem, V.H. 1995. Pacífico centro-oriental. Vertebrados, Parte 1. Roma, FAO: Guía FAO para la identificación de especies para los fines de la pesca.

Gainza, O., Ramírez, C., Ramos, A.S. y Romero, J. 2017. Intestinal microbiota of white shrimp Penaeus vannamei under intensive cultivation conditions in Ecuador. Microbial Ecology. 75:562-568.

Garibay-Valdez, E., Martínez-Córdova, L.R., Vargas-Albores, F., Gollas-Galván, T., Lago-Leston, A., Calderón, K. y Martínez- Porchas, M. 2019. Biofilm consumption shapes the intestinal microbiota of shrimp (Penaeus vannamei). Aquaculture Nutrition. 25:427-435.

Glenn, T.C. 2011. Field guide to next generation DNA sequencers. Molecular ecology resources. 11:759-769.

Gomez-Gil, B., Tron-Mayén, L., Roque, A., Turnbull, J.F., Inglis, V. y Guerra-Flores, A.L. 1998. Species of Vibrio isolated from hepatopancreas, haemolymph and digestive tract of a population of healthy juvenile Penaeus vannamei. Aquaculture. 163:1-9.

Holmes, E., Li, J.V., Athanasiou, T., Ashrafian, H. y Nicholson, J.K. 2011. Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends in Microbiology. 19:349-359.

Huang, Z., Li, X., Wang, L. y Shao, Z. 2016. Changes in the intestinal bacterial community during the growth of white shrimp, Litopenaeus vannamei. Aquaculture Research. 47:1737-1746.

Kircher, M. y Kelso, J. 2010. High throughput DNA sequencing– concepts and limitations. Bioessays. 32:524-536.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M. y Glöckner, F.O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research. 41:1-11.

Kohl, M., Wiese, S. y Warscheid, B. 2011. Cytoscape: software for visualization and analysis of biological networks. In Data Mining in Proteomics, ed. Springer, 291-303:Springer- Humana Press.

Langille, M.G.I., Zaneveld, J., Caporaso, J.G., Mcdonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. y Huttenhower, C. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nature Biotech. 31:814-821.

Lemos, D., Garcia-Carreno, F., Hernández, P. y Del Toro, A.N. 2002. Ontogenetic variation in digestive proteinase activity, RNA and DNA content of larval and postlarval white shrimp Litopenaeus schmitti. Aquaculture. 214:363-380.

Li, E., Xu, C., Wang, X., Wang, S., Zhao, Q., Zhang, M., Qin, J.G. y Chen, L. 2018. Gut microbiota and its modulation for healthy farming of Pacific white shrimp Litopenaeus vannamei. Reviews in Fisheries Science & Aquaculture. 26:381-399.

Li, K., Zheng, T., Tian, Y., Xi, F., Yuan, J., Zhang, G. y Hong, H. 2007a. Beneficial effects of Bacillus licheniformis on the intestinal microflora and immunity of the white shrimp, Litopenaeus vannamei. Biotechnology letters. 29:525-530.

Li, K., Zheng, T.L., Tian, Y. y Yuan, J.J. 2007b. Bacterial community structure in intestine of the white shrimp, Litopenaeus vanammei. Wei Sheng Wu Xue Bao. 47:649-653.

Li, P., Burr, G.S., Gatlin, D.M., Hume, M.E., Patnaik, S., Castille, F.L. y Lawrence, A.L. 2007c. Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. The Journal of Nutrition. 137:2763- 2768.

Liu, H., Liu, M., Wang, B., Jiang, K., Jiang, S., Sun, S. y Wang, L. 2010. PCR-DGGE analysis of intestinal bacteria and effect of Bacillus spp. on intestinal microbial diversity in kuruma shrimp (Marsupenaeus japonicus). Chinese Journal of Oceanology and Limnology. 28:808-814.

Liu, H., Wang, L., Liu, M., Wang, B., Jiang, K. y Ma, S. 2011. The intestinal microbial diversity in Chinese shrimp (Fenneropenaeus chinensis) as determined by PCR-DGGE and clone library analyses. Aquaculture. 317:32-36.

Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E., Wain, J. y Pallen, M.J. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology. 30:434-439.

Luis-Villasenor, I.E., Castellanos-Cervantes, T., Gomez-Gil, B., Carrillo-Garcia, A.E., Campa-Cordova, A.I. y Ascencio, F. 2013. Probiotics in the intestinal tract of juvenile whiteleg shrimp Litopenaeus vannamei: modulation of the bacterial community. World Journal of Microbiology and Biotechnology. 29:257-265.

Luis-Villaseñor, I.E., Voltolina, D., Gomez-Gil, B., Ascencio, F., Campa-Córdova, Á.I., Audelo-Naranjo, J.M. y Zamudio- Armenta, O.O. 2015. Probiotic modulation of the gut bacterial community of juvenile Litopenaeus vannamei challenged with Vibrio parahaemolyticus CAIM 170. Latin American Journal of Aquatic Research. 43:766-775.

Marchesi, J.R. y Ravel, J. 2015. The vocabulary of microbiome research: a proposal. Microbiome. 3:31.

Martínez-Cordova, L.R., Martínez-Porchas, M. y Cortes-Jacinto, E. 2009. Camaronicultura Mexicana y Mundial: ¿actividad sustentable o industria contaminante? Revista internacional de contaminación ambiental. 25:181-196.

Martínez-Córdova, L.R., Vargas-Albores, F., Garibay-Valdez, E., Ortíz-Estrada, Á.M., Porchas-Cornejo, M.A., Lago-Lestón, A. y Martínez-Porchas, M. 2018. Amaranth and wheat grains tested as nucleation sites of microbial communities to produce bioflocs used for shrimp culture. Aquaculture. 497:503-509.

Merrifield, D.L. y Ringo, E. 2014. Aquaculture nutrition: gut health, probiotics and prebiotics: John Wiley & Sons.

Moss, S.M., Moss, D.R., Arce, S.M., Lightner, D.V. y Lotz, J.M. 2012. The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture. Journal of invertebrate pathology. 110:247-250.

Nayak, S.K. 2010. Role of gastrointestinal microbiota in fish. Aquaculture Research. 41:1553-1573.

Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W. y Pettersson, S. 2012. Host-gut microbiota metabolic interactions. Science. 336:1262-1267.

Nrc. 2011. Nutrient requirements of fish and shrimp. National academies press: National Research Council

Oxley, A., Shipton, W., Owens, L. y Mckay, D. 2002. Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis. J Appl Microbiol. 93:214-223.

Palmer, C., Bik, E.M., Digiulio, D.B., Relman, D.A. y Brown, P.O. 2007. Development of the human infant intestinal microbiota. PLoS Biology. 5:e177.

Pangastuti, A., Suwanto, A., Lestari, Y. y Suhartono, M.T. 2009. Bacterial communities associated with white shrimp (Litopenaeus vannamei) larvae at early developmental stages. Biodiversitas Journal of Biological Diversity. 11:65-68.

Pérez, T., Balcázar, J., Ruiz-Zarzuela, I., Halaihel, N., Vendrell, D., De Blas, I. y Múzquiz, J. 2010. Host–microbiota interactions within the fish intestinal ecosystem. Mucosal Immunology. 3:355.

Rhoads, A. y Au, K.F. 2015. PacBio sequencing and its applications. Genomics, proteomics & bioinformatics. 13:278-289.

Ringø, E. 2008. The ability of carnobacteria isolated from fish intestine to inhibit growth of fish pathogenic bacteria: a screening study. Aquaculture Research. 39:171-180.

Rungrassamee, W., Klanchui, A., Chaiyapechara, S., Maibunkaew, S., Tangphatsornruang, S., Jiravanichpaisal, P. y Karoonuthaisiri, N. 2013. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages. PLoS ONE. 8:1-11.

Rungrassamee, W., Klanchui, A., Maibunkaew, S., Chaiyapechara, S., Jiravanichpaisal, P. y Karoonuthaisiri, N. 2014. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE. 9:e91853.

Rungrassamee, W., Klanchui, A., Maibunkaew, S. y Karoonuthaisiri, N. 2016. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure. Journal of invertebrate pathology. 133:12-19.

Salência, H., Mouriño, J., Ferreira, G., Arantes, R., Ubert, M., Lapa, K. y Seiffert, W. 2016. A bioaugmentation agent in super intensive marine shrimp farming system with zero water exchange. Journal of Aquaculture Research and Development. 7.

Sha, Y., Liu, M., Wang, B., Jiang, K., Qi, C. y Wang, L. 2016. Bacterial population in intestines of Litopenaeus vannamei fed different probiotics or probiotic supernatant. Journal of microbiology and biotechnology. 26:1736-1745.

Sommer, F. y Bäckhed, F. 2013. The gut microbiota — masters of host development and physiology. Nature Reviews Microbiology. 11:227.

Thompson, J., Gregory, S., Plummer, S., Shields, R.J. y Rowley, A.F. 2010. An in vitro and in vivo assessment of the potential of Vibrio spp. as probiotics for the Pacific White shrimp, Litopenaeus vannamei. Journal of Applied Microbiology. 109:1177-1187.

Tremaroli, V. y Backhed, F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature. 489:242- 249.

Tzuc, J.T., Escalante, D.R., Rojas Herrera, R., Gaxiola Cortés, G. y Ortiz, M.L.A. 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). SpringerPlus. 3:280.

Vargas-Albores, F., Ortiz-Suárez, L.E., Villalpando-Canchola, E. y Martínez-Porchas, M. 2017a. Size-variable zone in V3 region of 16S rRNA. RNA Biology. 14:1514-1521.

Vargas-Albores, F., Porchas-Cornejo, M.A., Martínez-Porchas, M., Villalpando-Canchola, E., Gollas-Galván, T. y Martínez- Córdova, L.R. 2017b. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgoland Marine Research. 71:5.

Vargas‐Albores, F., Martínez‐Porchas, M., Arvayo, M.A., Villalpando‐Canchola, E., Gollas‐Galván, T. y Porchas‐Cornejo, M.A. 2016. Immunophysiological response of Pacific white shrimp exposed to a probiotic mixture of Proteobacteria and Firmicutes in farm conditions. North American Journal of Aquaculture. 78:193-202.

Wagner, J., Coupland, P., Browne, H.P., Lawley, T.D., Francis, S.C. y Parkhill, J. 2016. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiology. 16:274.

Wang, X.-W. y Wang, J.-X. 2015. Crustacean hemolymph microbiota: Endemic, tightly controlled, and utilization expectable. Molecular Immunology. 68:404-411.

Xiong, J. 2018. Progress in the gut microbiota in exploring shrimp disease pathogenesis and incidence. Applied Microbiology and Biotechnology. 102:7343-7350.

Xiong, J., Dai, W., Zhu, J., Liu, K., Dong, C. y Qiu, Q. 2017. The underlying ecological processes of gut microbiota among cohabitating retarded, overgrown and normal shrimp. Microbial Ecology. 73:988-999.

Yanez, M., Catalan, V., Apraiz, D., Figueras, M. y Martinez-Murcia, A. 2003. Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. International Journal of Systematic and Evolutionary Microbiology. 53:875-883.

Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzéby, J., Amann, R. y Rosselló-Móra, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology. 12:635-645.

You, S.J., Hsu, C.L. y Ouyang, C.F. 2002. Identification of the microbial diversity of wastewater nutrient removal processes using molecular biotechnology. Biotechnology letters. 24:1361-1366.

Yuan, J., Zhang, X., Liu, C., Yu, Y., Wei, J., Li, F. y Xiang, J. 2018. Genomic resources and comparative analyses of two economical penaeid shrimp species, Marsupenaeus japonicus and Penaeus monodon. Marine Genomics. 39:22- 25.

Zeng, S., Huang, Z., Hou, D., Liu, J., Weng, S. y He, J. 2017. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ. 5:e3986.

Zheng, Y., Yu, M., Liu, J., Qiao, Y., Wang, L., Li, Z., Zhang, X.-H. y Yu, M. 2017. Bacterial community associated with healthy and diseased pacific white shrimp (Litopenaeus vannamei) larvae and rearing water across different growth stages. Frontiers in Microbiology. 8:1362.

Zheng, Y., Yu, M., Liu, Y., Su, Y., Xu, T., Yu, M. y Zhang, X.-H. 2016. Comparison of cultivable bacterial communities associated with Pacific white shrimp (Litopenaeus vannamei) larvae at different health statuses and growth stages. Aquaculture. 451:163-169.

Zhou, Z., Ding, Z. y Huiyuan, L.V. 2007. Effects of dietary short-chain fructooligosaccharides on intestinal microflora, survival, and growth performance of juvenile white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society. 38:296-301.

Zhu, J., Dai, W., Qiu, Q., Dong, C., Zhang, J. y Xiong, J. 2016. Contrasting ecological processes and functional compositions between intestinal bacterial community in healthy and diseased shrimp. Microbial Ecology. 72:975-985.

Zoqratt, M.Z.H., Eng, W.W.H., Thai, B.T., Austin, C.M. y Gan, H.M. 2018. Microbiome analysis of Pacific white shrimp gut and rearing water from Malaysia and Vietnam: implications for aquaculture research and management. PeerJ. 6:e5826-e5826.

Descargas

Publicado

2019-10-18

Cómo citar

Garibay-Valdez, E., Martínez-Porchas, M., Calderón, K., Gollas-Galván, T., Martínez- Córdova, L. R., Vargas-Albores, F., & Arvayo, M. A. (2019). La microbiota del tracto digestivo de camarones peneidos: una perspectiva histórica y estado del arte//The gut microbiota of penaeid shrimp: a historical perspective and state of the art. Biotecnia, 22(1), 5–16. https://doi.org/10.18633/biotecnia.v22i1.1119

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.