Biotechnological production of xylitol from agricultural waste//Producción biotecnológica de xilitol a partir de residuos agrícolas
DOI:
https://doi.org/10.18633/biotecnia.v22i1.1160Palabras clave:
Xylitol, agricultural residues, biotechnological pathways, sweeteners, food additivesResumen
Agricultural residues valorization has been an important issue over the last decades. Agricultural crop waste is an abundant, non-food, renewable, and low-cost feedstock to obtain attractive products for the food industry. The interest in replacing food ingredients such as artificial sweeteners with these obtained by biotechnological processes has grown in recent years, due to consumer’s high demand for low-calories foods and beverages without sacrificing taste. Several types of low caloric sweeteners are being obtained from the biotransformation of agricultural residues, with xylitol above all, for environmental, economic, and nutritional reasons. In recent years, the conversion of hydrolyzed agricultural residues into xylitol using enzymes, yeasts, and fungi has shown significant advances, although there are still many problems to be solved. This review presents the main advances in the use of microorganisms, substrates, and process conditions for the biotransformation of agricultural residues to xylitol. Besides, the main advantages and disadvantages of xylitol obtained by biotechnological routes compared to traditional chemical routes are discussed.
RESUMEN
La valorización de residuos agrícolas ha sido un tema importante en las últimas décadas. Los desechos de cultivos agrícolas son una materia prima abundante, no alimenticia, renovable y de bajo costo útil para obtener productos atractivos para la industria alimenticia. El interés por reemplazar ingredientes alimenticios de origen sintético por aquellos obtenidos por procesos biotecnológicos ha crecido en los últimos años debido a la gran demanda de los consumidores por los alimentos y bebidas con bajo contenido calórico sin sacrificar el sabor. Varios tipos de edulcorantes de bajo contenido calórico se han obteniendo a partir de la biotransformación de residuos agrícolas, destacando de todos ellos el xilitol por razones ecológicas, económicas y nutricionales. En los últimos años, la conversión de hidrolizados de residuos agrícolas en xilitol utilizando enzimas, levaduras y hongos ha mostrado avances importantes, aunque aún existen muchos problemas por resolver. En esta revisión se presentan los principales avances en el uso de microorganismos, sustratos y condiciones de proceso para la biotransformación de residuos agrícolas en xilitol. Además, se discuten las principales ventajas y desventajas del xilitol obtenido por rutas biotecnológicas comparado con las rutas químicas tradicionales.
Descargas
Citas
Bellisle, F. and Drewnowski, A. 2007. Intense sweeteners, energy intake and the control of body weight. Eur J Clin Nutr, 61(6), 691-700. 10.1038/sj.ejcn.1602649
Bledzki, A.K., Mamun, A.A. and Volk, J. 2010. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Composites Part A: Applied Science and Manufacturing, 41(4), 480-488. https:// doi.org/10.1016/j.compositesa.2009.12.004
Buranov, A.U. and Mazza, G. 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products, 28(3), 237-259. https:// doi.org/10.1016/j.indcrop.2008.03.008
Cheng, K.-K., Wu, J., Lin, Z.-N. and Zhang, J.-A. 2014. Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob. Biotechnology for Biofuels, 7(1), 166. 10.1186/s13068-014- 0166-y
Cherubini, F. 2010. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421. https://doi.org/10.1016/j.enconman.2010.01.015
Cortivo, P.R.D., Hickert, L.R., Hector, R. and Ayub, M.A.Z. 2018. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Industrial Crops and Products, 113, 10-18. https://doi.org/10.1016/j.indcrop.2018.01.010
Cristobal-Sarramian, A. and Atzmüller, D. 2018. Yeast as a production platform in biorefineries: conversion of agricultural residues into value-added products. Agronomy Research, 16(2), 377-388. https://doi.org/10.15159/AR.18.066
Cunha-Pereira, F.d., Hickert, L.R., Rech, R., Dillon, A.P. and Ayub, M.A.Z. 2017. Fermentation of hexoses and pentoses from hydrolyzed soybean hull into ethanol and xylitol by Candida guilliermondii BL 13. Brazilian Journal of Chemical Engineering, 34 ( 4), 927-936.
Dasgupta, D., Bandhu, S., Adhikari, D.K. and Ghosh, D. 2017. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological Research, 197, 9-21. https://doi.org/10.1016/j.micres.2016.12.012
Delgado Arcaño, Y., Valmaña García, O.D., Mandelli, D., Carvalho, W.A. and Magalhães Pontes, L.A. 2018. Xylitol: A review on the progress and challenges of its production by chemical route. Catalysis Today. https://doi.org/10.1016/j. cattod.2018.07.060
El-Tayeb, T.S., Abdelhafez, A.A., Ali, S.H. and Ramadan, E.M. 2012. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 43(4), 1523-1535. 10.1590/S1517-838220120004000037
Elamin, K., Sjöström, J., Jansson, H. and Swenson, J. 2012. Calorimetric and relaxation properties of xylitol-water mixtures. The Journal of Chemical Physics, 136(10), 104508. 10.1063/1.3692609
Fehér, A., Fehér, C., Rozbach, M., Rácz, G., Fekete, M., Hegedűs, L. and Barta, Z. 2018. Treatments of Lignocellulosic Hydrolysates and Continuous-Flow Hydrogenation of Xylose to Xylitol. Chemical Engineering & Technology, 41(3), 496-503. 10.1002/ceat.201700103
Hickert, L.R., da Cunha-Pereira, F., de Souza-Cruz, P.B., Rosa, C.A. and Ayub, M.A.Z. 2013. Ethanogenic fermentation of co-cultures of Candida shehatae HM 52.2 and Saccharomyces cerevisiae ICV D254 in synthetic medium and rice hull hydrolysate. Bioresource Technology, 131, 508-514. https://doi.org/10.1016/j.biortech.2012.12.135
Huang, C.-F., Jiang, Y.-F., Guo, G.-L. and Hwang, W.-S. 2011. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process. Bioresource Technology, 102(3), 3322-3329. https://doi.org/10.1016/j.biortech.2010.10.111
Isikgor, F.H. and Becer, C.R. 2015. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497- 4559. 10.1039/C5PY00263J
Islam, M.S. 2011. Effects of xylitol as a sugar substitute on diabetes-related parameters in nondiabetic rats. J Med Food, 14(5), 505-511. 10.1089/jmf.2010.0015
Islam, M.S. and Indrajit, M. 2012. Effects of xylitol on blood glucose, glucose tolerance, serum insulin and lipid profile in a type 2 diabetes model of rats. Ann Nutr Metab, 61(1), 57-64. 10.1159/000338440
Jablonský, M., Škulcová, A., Kamenská, L., Vrška, M. and Šíma, J. 2015. Deep Eutectic Solvents: Fractionation of Wheat Straw (Vol. 10).
Jaishankar, M., Mathew, B.B., Shah, M.S., Murthy, K. and Gowda, K. 2014. Biosorption of few heavy metal ions using agricultural wastes. Journal of Environment Pollution and Human Health, 2(1), 1-6.
Janakiram, C., Deepan Kumar, C.V. and Joseph, J. 2017. Xylitol in preventing dental caries: A systematic review and meta-analyses. Journal of natural science, biology, and medicine, 8(1), 16-21. 10.4103/0976-9668.198344
Jia, H., Shao, T., Zhong, C., Li, H., Jiang, M., Zhou, H. and Wei, P. 2016. Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Carbohydrate Polymers, 151, 676-683. https://doi.org/10.1016/j.carbpol.2016.06.013
Kishore, P., Kehlenbrink, S., Hu, M., Zhang, K., Gutierrez-Juarez, R., Koppaka, S., . . . Hawkins, M. 2012. Xylitol prevents NEFA-induced insulin resistance in rats. Diabetologia, 55(6), 1808- 1812. 10.1007/s00125-012-2527-z
Kumar, P.S., Ramakrishnan, K., Kirupha, S. Dinesh, and Sivanesan, S. 2010. Thermodynamic and kinetic studies of cadmium adsorption from aqueous solution onto rice husk. Brazilian Journal of Chemical Engineering, 27(2), 347-355. https:// dx.doi.org/10.1590/S0104-66322010000200013
Kumar, V., Krishania, M., Preet Sandhu, P., Ahluwalia, V., Gnansounou, E. and Sangwan, R.S. 2018. Efficient detoxification of corn cob hydrolysate with ion-exchange resins for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresource Technology, 251, 416-419. https://doi.org/10.1016/j.biortech.2017.11.039
Ledezma-Orozco, E., Ruíz-Salazar, R., Bustos-Vázquez, G., Montes-García, N., Roa-Cordero, V. and Rodríguez-Castillejos, G. 2018. Producción de xilitol a partir de hidrolizados ácidos no detoxificados de bagazo de sorgo por Debaryomyces hansenii. Agrociencia, 52, 1095-1106.
Lee, H.V., Hamid, S.B.A. and Zain, S.K. 2014. Conversion of Lignocellulosic Biomass to Nanocellulose: Structure and Chemical Process. The Scientific World Journal, 2014, 20. 10.1155/2014/631013
López-Linares, J.C., Romero, I., Cara, C., Castro, E. and Mussatto, S.I. 2018. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technology, 247, 736-743. https://doi.org/10.1016/j.biortech.2017.09.139
Mateo, S., Puentes, J.G., Moya, A.J. and Sanchez, S. 2015. Ethanol and xylitol production by fermentation of acid hydrolysate from olive pruning with Candida tropicalis NBRC 0618. Bioresour Technol, 190, 1-6. 10.1016/j.biortech.2015.04.045
Misra, S., Raghuwanshi, S. and Saxena, R.K. 2013. Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydrate Polymers, 92(2), 1596-1601. https://doi.org/10.1016/j. carbpol.2012.11.033
Mohagheghi, A., Ruth, M. and Schell, D.J. 2006. Conditioning hemicellulose hydrolysates for fermentation: Effects of overliming pH on sugar and ethanol yields. Process Biochemistry, 41(8), 1806-1811. https://doi.org/10.1016/j. procbio.2006.03.028
Mohamad, N.L., Mustapa Kamal, S.M. and Mokhtar, M.N. 2015. Xylitol Biological Production: A Review of Recent Studies. Food Reviews International, 31(1), 74-89. 10.1080/87559129.2014.961077
Muhammad, N., Salim ur, R., Fiaz, A. and Zarina, M. 2012. Biotechnological production of xylitol from dried banana peel hydrolysate and its impact on physicochemical properties of rusks. Electronic Journal of Environmental, Agricultural and Food Chemistry, 11(1), 2-14.
Mushtaq, Z., Rehman, S.-u.-., Zahoor, T. and Jamil, A. 2010. Impact of Xylitol Replacement on Physicochemical, Sensory and Microbial Quality of Cookies. Pakistan Journal of Nutrition, 9(6), 605-610.
Naidu, D.S., Hlangothi, S.P. and John, M.J. 2018. Bio-based products from xylan: A review. Carbohydrate Polymers, 179, 28-41. https://doi.org/10.1016/j.carbpol.2017.09.064
Nayak, P.A., Nayak, U.A. and Khandelwal, V. 2014. The effect of xylitol on dental caries and oral flora. Clinical, cosmetic and investigational dentistry, 6, 89-94. 10.2147/CCIDE.S55761
Pal, S., Mondal, A.K. and Sahoo, D.K. 2016. Molecular strategies for enhancing microbial production of xylitol. Process Biochemistry, 51(7), 809-819. https://doi.org/10.1016/j. procbio.2016.03.017
Peng, P. and She, D. 2014. Isolation, structural characterization, and potential applications of hemicelluloses from bamboo: A review. Carbohydrate Polymers, 112, 701-720. https://doi.org/10.1016/j.carbpol.2014.06.068
Ping, Y., Ling, H.-Z., Song, G. and Ge, J.-P. 2013. Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochemical Engineering Journal, 75, 86-91. https://doi.org/10.1016/j.bej.2013.03.022
Prakasham, R.S., Rao, R.S. and Hobbs, P.J. 2009. Current trends in Biotechnological Production of Xylitol and Future Prospects. Current Trends Biotechnology Pharmacy, 3(1), 8-36.
Rehman, S., Nadeem, M., Ahmad, F. and Mushtaq, Z. 2013. Biotechnological Production of Xylitol from Banana Peel and Its Impact on Physicochemical Properties of Rusks. Journal of Agricultural Science and Technology, 15(4), 747-756.
Rocha, G.J.d.M., Martin, C., Soares, I.B., Maior, A.M.S., Baudel, H.M. and Abreu, C.A.M.d. 2011. Dilute mixed-acid pretreatment of sugarcane bagasse for ethanol production. Biomass and Bioenergy, 35(1), 663-670. 10.1016/j.biombioe.2010.10.018
Saini, J.K., Saini, R. and Tewari, L. 2015. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5(4), 337-353. 10.1007/s13205-014-0246-5
Sehnem, N.T., Hickert, L.R., da Cunha-Pereira, F., de Morais, M.A. and Ayub, M.A.Z. 2017. Bioconversion of soybean and rice hull hydrolysates into ethanol and xylitol by furaldehyde-tolerant strains of Saccharomyces cerevisiae, Wickerhamomyces anomalus, and their cofermentations. Biomass Conversion and Biorefinery, 7(2), 199-206. 10.1007/ s13399-016-0224-8
Sharma, V.K., Ingle, N.A., Kaur, N., Yadav, P., Ingle, E. and Charania, Z. 2016. Sugar Substitutes and Health: A Review. Journal of Advanced Oral Research, 7 (2), 7-11.
Silva, D.D.V., Felipe, M.G.A., MancilhaI, I.M., LucheseIII, R.H. and Silva, S.S. 2004. Inhibitory effect of acetic acid on bioconversion of xylose in xylitol by Candida guilliermondii in sugarcane bagasse hydrolysate. Brazilian Journal of Microbiology, 35(3), 248-254. https://dx.doi.org/10.1590/ S1517-83822004000200014
Sousa-Aguiar, E.F., Appel, L.G., Zonetti, P.C., Fraga, A.d.C., Bicudo, A.A. and Fonseca, I. 2014. Some important catalytic challenges in the bioethanol integrated biorefinery. Catalysis Today, 234, 13-23. https://doi.org/10.1016/j. cattod.2014.02.016
Sun, Q., Xing, Y. and Xiong, L. 2014. Effect of xylitol on wheat dough properties and bread characteristics. International Journal of Food Science & Technology, 49(4), 1159-1167. doi:10.1111/ijfs.12412
Sun, R.C. (2010). Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels.
Tandel, K.R. 2011. Sugar substitutes: Health controversy over perceived benefits. Journal of pharmacology & pharmacotherapeutics, 2(4), 236-243. 10.4103/0976- 500X.85936
Tizazu, B.Z., Roy, K. and Moholkar, V.S. 2018a. Mechanistic investigations in ultrasound-assisted xylitol fermentation. Ultrasonics Sonochemistry, 48, 321-328. https://doi.org/10.1016/j.ultsonch.2018.06.014
Tizazu, B.Z., Roy, K. and Moholkar, V.S. 2018b. Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresource Technology, 268, 247-258. https://doi.org/10.1016/j. biortech.2018.07.141
Unrean, P. and Ketsub, N. 2018. Integrated lignocellulosic bioprocess for co-production of ethanol and xylitol from sugarcane bagasse. Industrial Crops and Products, 123, 238- 246. https://doi.org/10.1016/j.indcrop.2018.06.071
Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A. and Murtaza, M.A. 2015. Xylitol: A Review on Bioproduction, Application, Health Benefits, and Related Safety Issues. Critical Reviews in Food Science and Nutrition, 55(11), 1514-1528. 10.1080/10408398.2012.702288
Vallejos, M.E. and Area, M.C. (2017). Chapter 12 - Xylitol as Bioproduct From the Agro and Forest Biorefinery. In Grumezescu , Holban (Eds.), Food Bioconversion (pp. 411- 432): Academic Press.
Vaz de Arruda, P., dos Santos, J.C., de Cássia Lacerda Brambilla Rodrigues, R., da Silva, D.D.V., Yamakawa, C.K., de Moraes Rocha, G.J., . . . das Graças de Almeida Felipe, M. 2017. Scale up of xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guilliermondii FTI 20037. Journal of Industrial and Engineering Chemistry, 47, 297-302. https://doi.org/10.1016/j.jiec.2016.11.046
Venkateswar Rao, L., Goli, J.K., Gentela, J. and Koti, S. 2016. Bioconversion of lignocellulosic biomass to xylitol: An overview. Bioresour Technol, 213, 299-310. 10.1016/j. biortech.2016.04.092
Wang, L., Wu, D., Tang, P., Fan, X. and Yuan, Q. 2012. Xylitol production from corncob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Carbohydrate Polymers, 90(2), 1106-1113. https://doi.org/10.1016/j. carbpol.2012.06.050
Wei, J., Yuan, Q., Wang, T. and Wang, L. 2010. Purification and crystallization of xylitol from fermentation broth of corncob hydrolysates. Frontiers of Chemical Engineering in China, 4(1), 57-64. 10.1007/s11705-009-0295-1
Winkelhausen, E., Jovanovic-Malinovska, R., Velickova, E. and Kuzmanova, S. 2007. Sensory and Microbiological Quality of a Baked Product Containing Xylitol as an Alternative Sweetener. International Journal of Food Properties, 10(3), 639-649. 10.1080/10942910601098031
Xie, R., Wang, H., Chen, Y. and Jiang, W. 2013. Walnut shell-based activated carbon with excellent copper (II) adsorption and lower chromium (VI) removal prepared by acid–base modification. Environmental Progress & Sustainable Energy, 32(3), 688-696. 10.1002/ep.11686
Young, N.W.G. and O’Sullivan, G.R. (2011). 5 - The influence of ingredients on product stability and shelf life. In Kilcast , Subramaniam (Eds.), Food and Beverage Stability and Shelf Life (pp. 132-183): Woodhead Publishing.
Zhang, J., Zhang, B., Wang, D., Gao, X. and Hong, J. 2014. Xylitol production at high temperature by engineered Kluyveromyces marxianus. Bioresource Technology, 152, 192- 201. https://doi.org/10.1016/j.biortech.2013.10.109
Research & Market. Xylitol – A Global Market Overview. [Consultado 12 noviembre 2018]. Disponible en: http://industry-experts.com/verticals/food-and-beverage/xylitol-a-global-market-overview
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)