Extracción, caracterización y actividad antioxidante de lignina de lirio acuático (Eichhornia crassipes) y cáscara de nuez pecanera (Carya illinoinensis)

Autores/as

  • José Luis Espinoza-Acosta Universidad Estatal de Sonora
  • Beatriz Montaño-Leyva Universidad de Sonora
  • Dora E. Valencia-Rivera Universidad de Sonora, Campus Caborca
  • Ana I. Ledesma-Osuna Universidad de Sonora
  • Alejandro Vega-Rios Centro de Investigación en Materiales Avanzados (CIMAV)

DOI:

https://doi.org/10.18633/biotecnia.v24i2.1642

Palabras clave:

Lignina, Proceso organosolv, Lirio acuático, Cáscara de nuez pecanera, Compuestos fenólicos, Actividad antioxidante

Resumen

En este trabajo se investigó el potencial de lirio acuático (Eichhornia crassipes) y cáscara de nuez pecanera (Carya illinoinensis) como fuente de lignina. La extracción de la lignina se realizó aplicando un procedimiento organosolv y fue caracterizada por espectroscopía de infrarrojo, microscopía electrónica de barrido, y análisis termogravimétrico. La actividad antioxidante fue determinada a través de la estabilización de los radicales libres DPPH y ABTS. Los resultados mostraron mayor contenido de lignina y rendimiento de extracción en las cáscaras de nuez. El espectro infrarrojo reveló bandas típicas de los principales grupos funcionales; grupos –OH fenólicos, grupos metilo C–H3 y metoxilo O–CH3 los cuales forman parte del anillo aromático de la lignina. La lignina de lirio acuático (LLA) mostró alta resistencia a la degradación térmica la cual la sitúa como componente interesante para el desarrollo de resinas fenólicas y retardantes de flama. La lignina extraída de las cáscaras de nuez pecanera (LCN) mostró un alto porcentaje de inhibición contra los radicales DPPH y ABTS cuando fue solubilizada en etanol, metanol y mezclas de etanol-metanol 50:50 v/v. La alta actividad antioxidante de la LCN indica que este tipo de lignina pueden tener aplicaciones en la industria de alimentos y farmacéutica.

Citas

Abbasi, T., and Abbasi, S. A. (2010). “Biomass energy and the environmental impacts associated with its production and utilization.” Renewable and Sustainable Energy Reviews, 14(3), 919–937.

Ahn, D. J., Kim, S. K., and Yun, H. S. (2012). “Optimization of pretreatment and saccharification for the production of bioethanol from water hyacinth by Saccharomyces cerevisiae.” Bioprocess and Biosystems Engineering, 35(1), 35–41.

Arshanitsa, A., Ponomarenko, J., Dizhbite, T., Andersone, A., Gosselink, R. J. A., van der Putten, J., Lauberts, M., and Telysheva, G. (2013). “Fractionation of technical lignins as a tool for improvement of their antioxidant properties.” Journal of Analytical and Applied Pyrolysis, 103, 78–85.

Azadfar, M., Gao, A. H., Bule, M. V, and Chen, S. (2015). “Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol.” International Journal of Biological Macromolecules, 75, 58–66.

Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). “Use of a free radical method to evaluate antioxidant activity.” LWT - Food Science and Technology, 28(1), 25–30.

Buranov, A. U., and Mazza, G. (2008). “Lignin in straw of herbaceous crops.” Industrial Crops and Products, 28(3), 237–259.

Chanakya, H. N., Borgaonkar, S., Meena, G., and Jagadish, K. S. (1993). “Solid-phase biogas production with garbage or water hyacinth.” Bioresource Technology, 46(3), 227–231.

Cheng, J., Wang, X., Huang, R., Liu, M., Yu, C., and Cen, K. (2014). “Producing ethanol from water hyacinth through simultaneous saccharification and fermentation with acclimatized yeasts.” BioResources, 9(4), 7666–7680.

Chu, S., Subrahmanyam, A. V, and Huber, G. W. (2013). “The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound.” Green Chemistry, 15(1), 125–136.

Das, A., Ghosh, P., Paul, T., Ghosh, U., Pati, B. R., and Mondal, K. C. (2016). “Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes).” 3 Biotech, 6(1), 70.

Dizhbite, T., Telysheva, G., Jurkjane, V., and Viesturs, U. (2004). “Characterization of the radical scavenging activity of lignins––natural antioxidants.” Bioresource Technology, 95(3), 309–317.

Espinoza-Acosta, J. L., Torres-Chávez, P. I., Carvajal-Millán, E., Ramírez-Wong, B., Bello-Pérez, L. A., and Montaño-Leyva, B. (2014). “Ionic liquids and organic solvents for recovering lignin from lignocellulosic biomass.” BioResources, 9(2), 3660–3687.

García, A., Toledano, A., Andrés, M. Á., and Labidi, J. (2010). “Study of the antioxidant capacity of Miscanthus sinensis lignins.” Process Biochemistry, 45(6), 935–940.

Ghorbani, M., Liebner, F., van Herwijnen, H. W. G., Pfungen, L., Krahofer, M., Budjav, E., and Konnerth, J. (2016). “Lignin phenol formaldehyde resoles: The impact of lignin type on adhesive properties.” BioResources, 11(3), 6727–6741.

Girisuta, B., Danon, B., Manurung, R., Janssen, L. P. B. M., and Heeres, H. J. (2008). “Experimental and kinetic modelling studies on the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid.” Bioresource Technology, 99(17), 8367–8375.

Guragain, Y. N., De Coninck, J., Husson, F., Durand, A., and Rakshit, S. K. (2011). “Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth.” Bioresource Technology, 102(6), 4416–4424.

Jahirul, M. I., Rasul, M., Chowdhury, A., and Ashwath, N. (2012). “Biofuels production through biomass pyrolysis —A technological review.” Energies, 5, 4952–5001.

El Kaihal, A., Moustaqim, M., Elmarouani, M., Men-La-Yakhaf, S., Kifani-Sahban, F., Taibi, M., El Hajjaji, S., and Sebbahi, S. (2018). “Thermal and thermomechanical analyses of lignin.” Sustainable Chemistry and Pharmacy, 9(1), 63–68.

Köhnke, J., Gierlinger, N., Prats Mateu, B., Unterweger, C., Solt, P., Mahler, K., Schwaiger, E., Liebner, F., and Gindl-Altmutter, W. (2019). “Comparison of four technical lignins as resource for electrically conductive carbon particle.” Bioresources, 14, 1091–1109.

Lara-Serrano, J. S., Rutiaga-Quiñones, O. M., López-Miranda, J., Fileto-Pérez, H. A., Pedraza-Bucio, F. E., Rico-Cerda, J. L., and Rutiaga-Quiñones, J. G. (2016). “Physicochemical characterization of water hyacinth (Eichhornia crassipes (Mart.) Solms).” BioResources, 11(3), 7214–7223.

Leon-Bejarano, M., Durmus, Y., Ovando-Martínez, M., and Simsek, S. (2020). “Physical, barrier, mechanical, and biodegradability properties of modified starch films with nut by-products extracts.” Foods, 9(2).

Li, X., Liu, Y., Hao, J., and Wang, W. (2018). “Study of almond shell characteristics.” Materials (Basel, Switzerland), 11(9), 1782.

Ma, F., Yang, N., Xu, C., Yu, H., Wu, J., and Zhang, X. (2010). “Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth.” Bioresource Technology, 101(24), 9600–9604.

Mahmood, Z., Yameen, M., Jahangeer, M., Riaz, M., Ghaffar, A., & Javid, I. (2018). “Lignin as natural antioxidant capacity.” Lignin Trends and Applications, M. Yameen, ed., IntechOpen, Rijeka, 181–205.

Mattinen, M.-L., Riviere, G., Henn, A., Nugroho, R. W. N., Leskinen, T., Nivala, O., Valle-Delgado, J. J., Kostiainen, M. A., and Österberg, M. (2018). “Colloidal lignin particles as adhesives for soft materials.” Nanomaterials, 8(12), 1001.

Moccia, F., Agustin-Salazar, S., Verotta, L., Caneva, E., Giovando, S., D’Errico, G., Panzella, L., D’Ischia, M., and Napolitano, A. (2020). “Antioxidant properties of agri-food byproducts and specific boosting effects of hydrolytic treatments.” Antioxidants, 9(5), 438.

Mukherjee, R., and Nandi, B. (2004). “Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species.” International Biodeterioration & Biodegradation, 53, 7–12.

Muktham, R., Bhargava, S., Bankupalli, S., and Ball, A. (2016). “A review on 1 st and 2 nd generation bioethanol production-recent progress.” Journal of Sustainable Bioenergy Systems, 6, 72–92.

Nigam, J. N. (2002). “Bioconversion of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose–fermenting yeast.” Journal of Biotechnology, 97(2), 107–116.

Pinheiro do Prado, A. C., Monalise Aragão, A., Fett, R., and Block, J. M. (2009). “Antioxidant properties of pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion.” Grasas y Aceites, 60(4), 330–335.

Pouteau, C., Dole, P., Cathala, B., Averous, L., and Boquillon, N. (2003). “Antioxidant properties of lignin in polypropylene.” Polymer Degradation and Stability, 81(1), 9–18.

Prado, A. C. P. do, Manion, B. A., Seetharaman, K., Deschamps, F. C., Barrera Arellano, D., and Block, J. M. (2013). “Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts [Carya illinoinensis (Wangenh) C. Koch].” Industrial Crops and Products, 45, 64–73.

Pua, F., Fang, Z., Zakaria, S., Guo, F., and Chia, C. (2011). “Direct production of biodiesel from high-acid value Jatrophaoil with solid acid catalyst derived from lignin.” Biotechnology for Biofuels, 4(1), 56.

Qin, Z., Cheng, X.-C., Liu, H.-M., Yang, Q.-L., and Wang, X.-D. (2021). “Extraction of lignin from Chinese quince fruit by acetic acid solution at above atmospheric pressure: Yield distribution, structural characterization, and antioxidant activities.” Chemical Papers, 75(7), 3155–3167.

Qu, W., Yang, J., Sun, X., Bai, X., Jin, H., and Zhang, M. (2021). “Towards producing high-quality lignin-based carbon fibers: A review of crucial factors affecting lignin properties and conversion techniques.” International Journal of Biological Macromolecules, 189, 768–784.

Quesada-Medina, J., López-Cremades, F. J., and Olivares-Carrillo, P. (2010). “Organosolv extraction of lignin from hydrolyzed almond shells and application of the δ-value theory.” Bioresource Technology, 101(21), 8252–8260.

Ragauskas, A. J., Beckham, G. T., Biddy, M. J., Chandra, R., Chen, F., Davis, M. F., Davison, B. H., Dixon, R. A., Gilna, P., Keller, M., Langan, P., Naskar, A. K., Saddler, J. N., Tschaplinski, T. J., Tuskan, G. A., and Wyman, C. E. (2014). “Lignin valorization: improving lignin processing in the biorefinery.” Science, 344(6185), 1246843.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C. (1999). “Antioxidant activity applying an improved ABTS radical cation decolorization assay.” Free Radical Biology and Medicine, 26(9), 1231–1237.

Rezania, S., Md Din, M. F., Eva Mohamad, S., Sohaili, J., Mat Taib, S., Mohd Yusof, M. B., Kamyab, H., Darajeh, N., and Ahsan, A. (2017). “Review on pretreatment methods and ethanol production from cellulosic water hyacinth.” BioResources, 12(1), 2108–2124.

Ruan, T., Zeng, R., Yin, X.-Y., Zhang, S.-X., and Yang, Z.-H. (2016). “Water hyacinth (Eichhornia crassipes) biomass as a biofuel feedstock by enzymatic hydrolysis.” BioResources, 11(1), 2372–2380.

Ruiz, H. A., Ruzene, D. S., Silva, D. P., da Silva, F. F. M., Vicente, A. A., and Teixeira, J. A. (2011). “Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification.” Applied Biochemistry and Biotechnology, 164(5), 629–641.

Sakagami, H., Hashimoto, K., Suzuki, F., Ogiwara, T., Satoh, K., Ito, H., Hatano, T., Takashi, Y., and Fujisawa, S. (2005). “Molecular requirements of lignin–carbohydrate complexes for expression of unique biological activities.” Phytochemistry, 66(17), 2108–2120.

Schuerch, C. (1952). “The Solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin.” Journal of the American Chemical Society, American Chemical Society, 74(20), 5061–5067.

Shui, T., Feng, S., Yuan, Z., Kuboki, T., and Xu, C. (Charles). (2016). “Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids.” Bioresource Technology, 218, 953–961.

Sun, R., Tomkinson, J., and Lloyd Jones, G. (2000). “Fractional characterization of ash-AQ lignin by successive extraction with organic solvents from oil palm EFB fibre.” Polymer Degradation and Stability, 68(1), 111–119.

TAPPI 204 cm-07 (2007). Solvent extractives of wood and pulp. Peachtree Corners, GA.

TAPPI 211 om-16 (2016). Ash in wood, pulp, paper and paperboard: Combustion at 525 degrees. Peachtree Corners, GA.

TAPP 222 om-11 (2011). Acid-insoluble lignin in wood and pulp. Peachtree Corners, GA.

Tejado, A., Peña, C., Labidi, J., Echeverria, J. M., and Mondragon, I. (2007). “Physico-chemical characterization of lignins from different sources for use in phenol–formaldehyde resin synthesis.” Bioresource Technology, 98(8), 1655–1663.

Villarreal-Lozoya, J. E., Lombardini, L., and Cisneros-Zevallos, L. (2007). “Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars.” Food Chemistry, 102(4), 1241–1249.

Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., and Jeelani, S. (2015). “Extraction and characterization of lignin from different biomass resources.” Journal of Materials Research and Technology, 4(1), 26–32.

Wise, L. E., Murphy, M., and Adieco, A. A. D. (1946). “A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses.” Tech. Assoc. pulp Pap. Ind., 29(1), 210–218.

Xu, F., Sun, J.-X., Sun, R., Fowler, P., and Baird, M. S. (2006). “Comparative study of organosolv lignins from wheat straw.” Industrial Crops and Products, 23(2), 180–193.

Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C. (2007). “Characteristics of hemicellulose, cellulose and lignin pyrolysis.” Fuel, 86(12), 1781–1788.

Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., and Weckhuysen, B. M. (2010). “The catalytic valorization of lignin for the production of renewable chemicals.” Chemical Reviews, 110(6), 3552–3599.

Zhang, Q., Weng, C., Huang, H., Achal, V., and Wang, D. (2016). “Optimization of bioethanol production using whole plant of water hyacinth as substrate in simultaneous saccharification and fermentation process.” Frontiers in Microbiology, 6(1), 1411.

Descargas

Publicado

2022-05-31

Número

Sección

Artículos