Uso de microalgas como constituyentes parciales del alimento balanceado para engorda de tilapia (Oreochromis niloticus)//The use of microalgae as partial constituents of growout feeds for tilapia (Oreochromis niloticus)

Autores/as

  • Ramón Héctor Barraza-Guardado Departmento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0001-5698-2312
  • Ana María Pérez-Villalba Departmento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, México
  • Mayra Lizett González-Félix Departmento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0003-1886-4096
  • José Ahmed Tadeo Ortega-Urbina Biotecmex BTM S.A. de C.V., Calle Nayarit No. 147, Local B, Col. Cinco de Mayo, C.P. 83010, Hermosillo, Sonora, México
  • Raúl Muñoz-Hernández Biotecmex BTM S.A. de C.V., Calle Nayarit No. 147, Local B, Col. Cinco de Mayo, C.P. 83010, Hermosillo, Sonora, México
  • Manuel Zúñiga-Panduro Departmento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosios/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, México
  • Martin Perez-Velazquez Departmento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosios/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, México https://orcid.org/0000-0002-9019-1220

DOI:

https://doi.org/10.18633/biotecnia.v22i1.1161

Palabras clave:

Oreochromis niloticus, microalgas, alimento balanceado, Arthrospira sp., Chlorella sp., Nannochloropsis sp., Isochrysis sp.

Resumen

El presente estudio evaluó el uso de las microalgas Arthrospira sp., Chlorella sp., Isochrysis sp. y Nannochloropsis sp. como constituyentes parciales del alimento balanceado para tilapia del Nilo (Oreochromis niloticus) bajo condiciones de cultivo estático en un estudio de 53 días de duración. Un alimento balanceado comercial con contenido de proteína cruda de 45% se utilizó como dieta control, mismo que se molió finamente y se reconstituyó incorporando, a un nivel de inclusión de 25% de la dieta, las harinas de las cuatro especies de microalgas mencionadas. Se analizaron parámetros de producción de tilapia, incluyendo índices de crecimiento y supervivencia, mediante análisis de varianza. Los índices de crecimiento, tales como peso final, peso ganado y porcentaje de peso ganado de los peces alimentados con las microalgas Arthrospira sp. y Chlorella sp., así como la supervivencia, fueron similares a los de aquellos que recibieron la dieta control, mientras que el crecimiento de peces alimentados con las microalgas Isochrysis sp. y Nannochloropsis sp. fue inferior estadísticamente. Estos resultados indican que Arthrospira sp. y Chlorella sp. pueden ser incorporadas a un nivel de 25% del alimento balanceado sin afectar significativamente el crecimiento o la supervivencia de O. niloticus.

ABSTRACT

In the present study, the use of the microalgae Arthrospira sp., Chlorella sp., Isochrysis sp., and Nannochloropsis sp., as partial constituents in diets for Nile tilapia (Oreochromis niloticus), was evaluated in static tanks in a 53-day study, with a commercial diet containing 45% crude protein as a control treatment. Then, we replaced 25% of this diet with meals derived from each of the four microalgae species. Analysis of variance was employed to evaluate fish growth performance. Fish fed the diets with the microalgae Arthrospira sp. and Chlorella sp. had growth performance comparable to that of fish fed the control diet, as evaluated by growth parameters, such as final weight, weight gain, and percent weight gain, among others. In contrast, growth of fish receiving the microalgae Isochrysis sp. and Nannochloropsis sp. was significantly lower. Results of the present study indicate that the use of 25% of Arthrospira sp. and Chlorella sp. meals incorporated into the diet of O. niloticus does not compromise fish development, although there seems to be an opportunity for a further increment of the replacement level.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Abdelghany, A.E. 2003. Partial and complete replacement of fish meal with gambusia meal in diets for red tilapia ‘Oreochromis niloticus x O. mossambicus’. Aquaculture Nutrition 9: 145-154.

Al-Thobaitia, A., Al-Ghanima, K., Ahmeda, Z., Sulimana, E.M. y Mahbooba, S. 2018. Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance in Nile Tilapia (Oreochromis niloticus L.) diets. Brazilian Journal of Biology 78: 525-534.

Bin Dohaish, E., Al Dhahri, M. y Omar, H. 2018. Potential application of the blue-green alga (Spirulina platensis) as a supplement in the diet of Nile tilapia (Oreochromis niloticus). Applied Ecology and Environmental Research 16:7883-7902.

Bleakley, S. y Hayes, M. 2017. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 6 (5): 33. DOI:10.3390/foods6050033

Borgeson, T.L., Racz, V.J., Wilkie, D.C., White L.J. y Drew, M.D. 2006. Effect of replacing fishmeal and oil with simple or complex mixtures of vegetables ingredients in diets fed to Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition 12: 141-149.

Buentello, A., Jirsa, D., Barrows, F. y Drawbridge, M. 2015. Minimizing fishmeal use in juvenile California yellowtail, Seriola lalandi, diets using non-GM soybeans selectively bred for aquafeeds. Aquaculture 435: 403-411.

Cantor-Atlatenco, F. 2007. Manual de producción de tilapia. Secretaría de Desarrollo Rural del Estado de Puebla, Puebla, México 135 pp.

Cerezuela, R., Guardiola, F.A., Meseguer, J. y Esteban, M.A. 2012. Enrichment of gilthead seabream (Sparus aurata L.) diet with microalgae: effects on the immune system. Fish Physiology and Biochemistry 38: 1729-1739.

Duerr, E.O., Molnar, A. y Sato, V. 1998. Cultured microalgae as aquaculture feeds. Journal of Marine Biotechnology 6: 65- 70.

Duy, A.T., Scharama, J., Dam, A.V. y Verreth, A.J. 2008. Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus. Aquaculture 275: 152-162.

El-Saidy, D.M.S.D. y Gaber, M.M.A. 2002. Complete replacement of fish meal by soybean meal with dietary L-lysine supplementation from Nile tilapia, Oreochromis niloticus (L.) fingerlings. Journal of the World Aquaculture Society 3: 297- 306.

El-Saidy, D.M.S.D. y Gaber, M.M.A. 2003. Replacement of fish meal with mixture of different plant protein sources in juvenile Nile tilapia, Oreochromis niloticus (L.) diets. Aquaculture Research 34: 1119-1127.

El-Sayed, A.F.M. 2006. Tilapia culture. CABI publishing, Londres, Reino Unido, 277 p.

Fox, J.M., Lawrence, A.L. y Smith, F. 2004. Developing a low-fish meal feed formulation for comercial production of Litopenaeus vannamei. 238-258 pp. En: Cruz Suárez, L.E., Ricque Marie, D., Nieto López, M.G., Villareal-Cavazos, D.A., Scholz, U. y M.L. González-Félix (Eds.). Avances en Nutrición Acuícola VII. Memorias del Séptimo Simposium Internacional de Nutrición Acuícola, 16 al 19 de Noviembre de 2004. Hermosillo, Sonora, México.

González-Félix, M.L., Perez-Velazquez, M., Bringas-Alvarado, L., Cota-Moreno, V. y Navarro-García, G. 2011. Fishmeal replacement by plant proteins in diets of different protein levels for Nile tilapia (Oreochromis niloticus) culture. The Israeli Journal of Aquaculture-BAMIDGEH 566: 1-8.

Halver, J.E. 1980. Lipids and fatty acids. En: Fish feed technology. United Nations Development Programme/Food and Agriculture Organization of the United Nations (FAO) (ed.), Roma, Italia.

He, Y., Lin, G., Rao, X., Chen, L., Jian, H., Wang, M., Guo, Z. y Chen, B. 2018. Microalga Isochrysis galbana in feed for Trachinotus ovatus: effect on growth performance and fatty acid composition of fish fillet and liver. Aquaculture International 26: 1261-1280.

Kiron, V., Phromkunthongm W., Huntleym, M., Archibaldm I y De Scheemakerm, G. 2012. Marine microalgae from biorefinery as a potential feed protein source for Atlantic salmon, common carp and whiteleg shrimp. Aquaculture Nutrition 18: 521-531.

Kousoulaki, K., Mørkøre, T., Nengas, I., Berge, R.K. y Sweetman, J. 2016. Microalgae and organic minerals enhance lipid retention efficiency and fillet quality in Atlantic salmon (Salmo salar L.). Aquaculture 451: 47-57.

Lubián, L.M., Montero, O., Moreno-Garrido, I., Huertas, I.E., Sobrino, C., González-Del Valle, M. y Parés, G. 2000. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology 12 (3-5): 249-255.

Olvera-Novoa, M.A., Domínguez-Cen, L.J. y Olivera-Castillo, L. 1998. Effect of the use of the microalga Spirulina máxima as fish meal replacement in diets for tilapia, Oreochromis mossambicus (Peters), fry. Aquaculture Research 29: 709-715.

Olvera-Novoa, M.A., Olivera-Castillo, L. y Martínez-Palacios, C.A. 2002. Sunflower seed meal as a protein source in diets for Tilapia rendalli (Bounlanger, 1896) fingerlings. Aquaculture Research 23: 223-229.

Ochieng Ogello, E., Mbonge Munguti, J., Sakakura, Y. Hagiwara, A. 2014. Complete Replacement of Fish Meal in the Diet of Nile Tilapia (Oreochromis niloticus L.) Grow-out with Alternative Protein Sources. A review. International Journal of Advanced Research 2: 962-978.

Otles, S. y Pire, R. 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of the Association of Official Analytical Chemists 84: 1708-1714.

Patterson, D. y Gatlin, D.M. III. 2013. Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops ocellatus). Aquaculture 416-417: 92-98.

Patil, V., Källqvist, T., Olsen, E., Vogt, G. y Gislerød, H.R. 2007. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International 15: 1-9.

Perez-Velazquez, M., Gatlin III, D.M, González-Félix, M.L. y García- Ortega, A., 2018. Partial replacement of fishmeal and fish oil by algal meals in diets of red drum Sciaenops ocellatus. Aquaculture 487: 41-50.

Perez-Velazquez, M, Gatlin III, D.M, González-Félix, M.L., García- Ortega, A., de Cruz, C.R., Juárez-Gómez, M.L. y Chen, K. 2019. Effect of fishmeal and fish oil replacement by algal meals on biological performance and fatty acid profile of hybrid striped bass (Morone crhysops ♀× M. saxatilis ♂). Aquaculture 507: 83-90. https://doi.org/10.1016/j. aquaculture.2019.04.011.

Richmond, A. 1988. Spirulina. In: Borowitzka, M.A., Borowitzka, L.J. (Eds.), Micro-algal Biotechnology. Cambridge University Press, Cambridge, pp. 85-121.

Ryan, A.S., Zeller, S.G. y Nelson, E.B. 2010. Safety evaluation of single cell oils and the regulatory requirements for use as food ingredients. In: Ratledge, C., Cohen, Z. (Eds.), Single Cell Oils. AOCS Press, Urbana, Illinois, EUA, pp. 317-350.

Rossi Jr., W., Moxely, D., Buentello, A., Pholenz, C. y Gatlin III, D.M. 2013. Replacement of fishmeal in the diet of red drum Sciaenops ocellatus: an assessment of nutritional value. Aquaculture Nutrition 19: 72-81.

Sarker, P.K., Kapuscinski, A.R., Bae, A.Y., Donaldson, E., Sitek, A.J., Fitzgerald, D.S. y Edelson, O.F. 2018. Towards sustainable aquafeeds: Evaluating substitution of fishmeal with lipid-extracted microalgal co-product (Nannochloropsis oculata) in diets of juvenile Nile tilapia (Oreochromis niloticus). PLoS ONE 13 (7): e0201315. https://doi.org/10.1371/journal. pone.0201315.

Sayed, A.E.-D.H., Elbaghdady, H.A.M. y Zahran, E. 2015. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract. Environmental Monitoring and Assessment 187: 751.

Sørensen, M., Gong, Y., Bjarnason, F., Vasanth, G.K., Dahle, D., Huntley, M. y Kiron, V. 2017. Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. PloS ONE 12(7): e0179907.

Tacon, A.G.J. 1997. Fish meal replacers: review of antinutrients within oilseeds and pulses - a limiting factor for the aquafeed green revolution? In: Tacon A., Basurco B., (Eds.), pp. 153- 182. Feeding tomorrow’s fish. Vol. 22. Cahiers Options Méditerranéennes, Institut Agronomique Méditerranéen de Zaragoza, Spain.https://doi.org/10.1371/journal. pone.0179907 PMID: 28704386.

Tacon, A.G.J., Hasan, M.R. y Metian, M. 2011. Demand and supply of feed ingredients for farmed fish and crustaceans - trends and prospects. Fisheries and Aquaculture Technical Paper 564, Food and Agriculture Organization, Roma, Italia, 87 pp.

Tocher, D.R. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquaculture Research 41: 717-732.

Walker, A.B. y Berlinsky, D.L. 2011. Effects of partial replacement of fish meal protein by microalgae on growth, feed intake, and body composition of Atlantic cod. North American Journal of Aquaculture 73: 76-83.

Descargas

Publicado

2019-11-18

Cómo citar

Barraza-Guardado, R. H., Pérez-Villalba, A. M., González-Félix, M. L., Ortega-Urbina, J. A. T., Muñoz-Hernández, R., Zúñiga-Panduro, M., & Perez-Velazquez, M. (2019). Uso de microalgas como constituyentes parciales del alimento balanceado para engorda de tilapia (Oreochromis niloticus)//The use of microalgae as partial constituents of growout feeds for tilapia (Oreochromis niloticus). Biotecnia, 22(1), 135–141. https://doi.org/10.18633/biotecnia.v22i1.1161

Número

Sección

Artículos originales

Métrica

Artículos más leídos del mismo autor/a

Artículos similares

<< < 1 2 3 4 5 6 7 8 9 10 11 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.