Efecto del estrés salino sobre la morfología y fitoquímica de orégano mexicano (Lippia graveolens Kunth) cultivado in vitro

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v22i3.1223

Palabras clave:

Lippia graveolens, estrés, fenoles totales, capacidad antioxidante

Resumen

Las plantas, al ser organismos sésiles sufren diferentes tipos de estreses bióticos y abióticos. En este trabajo se cultivaron  in vitro plantas de orégano, bajo condiciones de estrés salino (NaCl 25 mM), en diferentes fuentes de luz: blanca (CTL), ultravioleta tipo C (UV-C) y de amplio espectro (AE). Se evaluaron cambios morfológicos en las plantas tratadas, así como parámetros fitoquímicos (fenoles y flavonoides totales y la capacidad antioxidante). Los tratamientos NaCl/CTL y AE mostraron el mayor número de yemas activadas. La luz UV-C mostró la menor cantidad de yemas y de altura de planta, sin embargo, no se observó efecto de la salinidad. La luz UV-C causó el menor número de hojas, así como raíces adventicias. No parece haber injerencia de la condición salinidad en estos resultados. La condición que provocó el mayor contenido de fenoles fue la luz UV-C y la que provocó el mayor contenido de flavonoides fue la combinación NaCl/UV-C. La combinación NaCl/AE causó la mayor capacidad antioxidante con el método DPPH y ABTS. No se observó una correlación entre el contenido de fenoles y la capacidad antioxidante.

Biografía del autor/a

Rayn Aarland, Universidad de Guadalajara

Profesor/ Investigador Centro Universitario de la Ciénega

Departamento de Ciencias Médicas y de la Vida

Universidad de Guadalajara

Osvaldo Castellanos-Hernandez, Universidad de Guadalajara

Profesor/ Investigador Centro Universitario de la Ciénega

Departamento de Ciencias Médicas y de la Vida

Universidad de Guadalajara

Araceli Rodriguez-Sahagun, Universidad de Guadalajara

Profesor/ Investigador Centro Universitario de la Ciénega

Departamento de Ciencias Médicas y de la Vida

Universidad de Guadalajara

Gustavo Acevedo-Hernandez, Universidad de Guadalajara

Profesor/ Investigador Centro Universitario de la Ciénega

Departamento de Ciencias Médicas y de la Vida

Universidad de Guadalajara

Citas

Ahmed A., Ahmed M., Al- Sayed H., Smetanska I. (2012). Effect of Drought and Salinity Stress on Total Phenolic, Flavonoids and Flavonols Contents and Antioxidant Activity in in vitro Sprout cultures of Garden cress (Lepidium sativum). Journal of Applied Sciences Research 8: 3934-3942.

Arif M., Islam M., Robin A. (2019). Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus. Plants 8: 192.

Bagues M., Hafsi C., Yahia Y., Souli I., Boussora F., Nagaz K. (2019). Modulation of Photosynthesis, Phenolic Contents, Antioxidant Activities, and Grain Yield of Two Barley Accessions Grown under Deficit Irrigation with Saline Water in an Arid Area of Tunisia. Polish Journal of Environmental Studies 5: 3071-3080.

Brand-Williams W., Cuvelier M., Berset C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensmittel-Wissenschaft + Technologie 28: 25-30.

Chang C., Yang M., Wen H., Chern J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178-82.

Gill S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.

González-Trujano M., Hernández-Sánchez L., Muñoz Ocotero V., Dorazco-González A., Guevara Fefer P., Aguirre-Hernández E. (2017). Pharmacological Evaluation of the anxiolytic-like Effects of Lippia graveolens and Bioactive Compounds. Pharmaceutical Biology 55: 1569-1576.

Herrera-Rodríguez S., López-Rivera R., García-Márquez E., Estarrón-Espinoza M., Espinosa-Andrews H. (2019). Mexican Oregano (Lippia graveolens) Essential oil-in-water Emulsions: Impact of Emulsifier type on the Antifungical Activity of Candida albicans. Food Science and Biotechnology 28: 441- 448.

Isah T. (2019). Stress and Defense Responses in Plant Secondary Metabolites Production. Biological Research 52:39.

Isayenkov S., Maathuis F. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science 10:80.

Kedare S., Singh R. (2011). Genesis and Development of DPPH method of Antioxidant Assay. Journal of Food Science and Technology 48: 412-422.

Keyvan S. (2010). The Effects of Drought Stress on Yield, Relative Water Content, Proline, Soluble carbohydrates and Chlorophyll of Bread Wheat Cultivars. Journal of Animal and Plant Sciences 8: 1051-1060.

Kotagiri D., Kolluru V. (2017). Effect of Salinity Stress on the Morphology & Physiology of Five Different Coleus Species. Biomedical & Pharmacology Journal 10: 1639-1649.

López-Villafranco M., Aguilar-Contreras A., Aguilar-Rodríguez S., Xolalpa-Molina S. (2017). Las Verbenaceae Empleadas como Recurso Herbolario en México: Una Revisión Etnobotánica- Médica. Polibotánica 44: 195-216.

Martínez-Hernández R., Villa-Castorena M., Catalán-Valencia E., Inzunza-Ibarra M. (2015). Production of Oregano (Lippia graveolens Kunth) Seedlings from Seeds in Nursery for transplanting. Revista Chapingo Serie Ciencias Forestales y del Ambiente 23: 61-73.

Mata-González R., Meléndez-González R. (2005). Growth Characteristics of Mexican Oregano (Lippia Berlandieri Schauer) Under Salt Stress. The Southwestern Naturalist 50: 1-6.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15: 473-497.

Mzabri I., Legsayer M., Kouddane N., Boukroute A., Berrichi A. (2017). Salt Stress Effects on Some Morphological, Physiological and Biochemical Parameters of Saffron Plant (Crocus sativus L.) in Eastern Morocco. Journal of Materials and Environmental Sciences 8: 4894-4901.

Pascual M., Slowing K., Carretero E., Sánchez Mata D., Villar A. (2001). Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology 76: 201-214.

Pereira D., Valentão P., Pereira J., Andrade P. (2009). Phenolics: From Chemistry to Biology. Molecules 14: 2202-2211.

Rahdari P., Hoseini S. (2012). Drought stress: A Review. International Journal of Agronomy and Plant Production 3: 443-336.

Rana R., Rehman S., Ahmed J., Bilal M. (2013). A Comprehensive Overview of Recent Advances in Drought Stress Tolerance Research in Wheat (Triticum aestivum L.) Asian Journal of Agriculture and Biology 1: 29-37.

Razzaq A., Ali A., Bin Safdar L., Zafar M., Rui Y., Shakeel A., Shaukat A., Ashraf M., Gong W., Yuan Y. (2019). Salt Stress Induces Physiochemical Alterations in Rice Grain Composition and Quality. Journal of Food Science 0: 1-7.

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice- Evans C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine 26: 1231-1237.

Rivera G., Bocanegra-García V., Monge A. (2010). Traditional Plants as Source of Fundamental Foods: A Review. CyTA-Journal of Food 8: 159-167.

Rivero-Pérez M., Muñiz P., González-Sanjosé M. (2007). Antioxidant Profile of Red Wines Evaluated by Total Antioxidant Capacity, Scavenger Activity, and Biomarkers of Oxidative Stress Methodologies. Journal of Agricultural and Food Chemistry 55: 5476-5483.

San Miguel-Chávez R. (2017). Phenolic Antioxidant Capacity: A Review of the State of the Art. En: Phenolic Compounds- Biological Activity. Soto-Hernández M., Palma-Tenango M., García-Mateos M. (ed.), p 59-74.

Sarker U., Islam M., Oba S. (2018). Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor leaves. PLoS ONE 13: e0206388.

Sarker U., Oba S. (2019). Salinity Stress Enhances Color Parameters, Bioactive Leaf Pigments, Vitamins, Polyphenols,Flavonoids and Antioxidant Activity in Selected Amaranthus Leafy Vegetables. Journal of the Science of Food and Agriculture 99: 2275-2284.

Selmar D. (2008). Potential of Salt and Drought Stress to Increase Pharmaceutical Significant Secondary Compounds in Plants. Landbauforschung-vTI Agriculture and Forestry Research 1/2: 139-144.

Sharif I., Aleem S., Farooq J., Rizwan M., Younas A., Sarwar S., Chohan S. (2019). Salinity Stress in Cotton: Effects, Mechanism of Tolerance and its Management Strategies. Physiology and Molecular Biology of Plants 25:807-820.

Sharma I., Ching E., Saini S., Bhardwaj R., Pati P. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry 69. pp17-26.

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 24: 2452.

Singleton V., Rossi J. (1965). Colorimetry of Total Phenolics with Phosphomolyb-diphosphotungstic Acid Reagents. American Journal of Enology and Viticulture 16: 144- 158.

Sytar O., Barki S., Zivcak M., Brestic M. (2018). The involvement of different secondary metabolites in salinity tolerance of crops. En: Salinity responses and tolerance in plants, vol. 2. Kumat V. (ed.), pp 21-48. Berlin: Springer International Publishing AG, part of Springer Nature.

Valifard M., Mohsenzadeh S., Kholdebarin B., Rowsan V. (2014). Effects of Salt Stress on Volatile Compounds, Total Phenolic Content and Antioxidant Activities of Salvia mirzayanii. South African Journal of Botany 93: 92-97.

Zhong Y., Shahidi F. (2012). Methods for the Assessment of Antioxidant Activity in Foods. En: Handbook of Antioxidants for Food Preservation. Shahidi F. (ed.), pp 287-333. Woodhead Publishing.

Zlatev Z., Lidon C. (2012). An Overview on Drought Induced Changes in Plant Growth, Water Relations and Photosynthesis. Emirates Journal of Food and Agriculture 24: 57-72.

Zhou Y., Tang N., Huang L., Zhao Y., Tang X., Wang K. (2018). Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences 19: 252.

Descargas

Publicado

2020-09-23

Número

Sección

Artículos