Effect of saline stress on the morphology and phytochemistry of in vitro grown mexican oregano (Lippia graveolens Kunth)
DOI:
https://doi.org/10.18633/biotecnia.v22i3.1223Keywords:
Lippia graveolens, stress, total phenols, antioxidant capacityAbstract
Plants, being sessile organisms, suffer from a range of biotic and abiotic stress. In this investigation, oregano plants were grown in vitro under saline stress conditions (NaCl 25 mM), combined with different types of lights: white light (CTL), ultraviolet- C (UV-C) and broad-spectrum light (AE). Morphological changes were evaluated in the treated plants, as well as phytochemical parameters (total phenolic compounds, total flavonoids and antioxidant capacity). NaCl/CTL and AE conditions showed the highest numbers of activated buds. UV-C light showed the lowest number of buds and plant height, however, no effect from salinity was observed. Also, UV-C light caused the lowest amount of leaves and adventitious roots, which do not seem to be influenced by salinity. The stress condition that caused the highest amount of phenols was UV-C light, while the combination of NaCl/ UV-C showed the highest number of total flavonoids. As for the antioxidant capacity, NaCl/AE showed the highest capacity using both the DPPH and ABTS method. No correlation between phenols and antioxidant capacity was observed.
Downloads
References
Ahmed A., Ahmed M., Al- Sayed H., Smetanska I. (2012). Effect of Drought and Salinity Stress on Total Phenolic, Flavonoids and Flavonols Contents and Antioxidant Activity in in vitro Sprout cultures of Garden cress (Lepidium sativum). Journal of Applied Sciences Research 8: 3934-3942.
Arif M., Islam M., Robin A. (2019). Salinity Stress Alters Root Morphology and Root Hair Traits in Brassica napus. Plants 8: 192.
Bagues M., Hafsi C., Yahia Y., Souli I., Boussora F., Nagaz K. (2019). Modulation of Photosynthesis, Phenolic Contents, Antioxidant Activities, and Grain Yield of Two Barley Accessions Grown under Deficit Irrigation with Saline Water in an Arid Area of Tunisia. Polish Journal of Environmental Studies 5: 3071-3080.
Brand-Williams W., Cuvelier M., Berset C. (1995). Use of a Free Radical Method to Evaluate Antioxidant Activity. Lebensmittel-Wissenschaft + Technologie 28: 25-30.
Chang C., Yang M., Wen H., Chern J. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 10: 178-82.
Gill S., Tuteja N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48: 909-930.
González-Trujano M., Hernández-Sánchez L., Muñoz Ocotero V., Dorazco-González A., Guevara Fefer P., Aguirre-Hernández E. (2017). Pharmacological Evaluation of the anxiolytic-like Effects of Lippia graveolens and Bioactive Compounds. Pharmaceutical Biology 55: 1569-1576.
Herrera-Rodríguez S., López-Rivera R., García-Márquez E., Estarrón-Espinoza M., Espinosa-Andrews H. (2019). Mexican Oregano (Lippia graveolens) Essential oil-in-water Emulsions: Impact of Emulsifier type on the Antifungical Activity of Candida albicans. Food Science and Biotechnology 28: 441- 448.
Isah T. (2019). Stress and Defense Responses in Plant Secondary Metabolites Production. Biological Research 52:39.
Isayenkov S., Maathuis F. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science 10:80.
Kedare S., Singh R. (2011). Genesis and Development of DPPH method of Antioxidant Assay. Journal of Food Science and Technology 48: 412-422.
Keyvan S. (2010). The Effects of Drought Stress on Yield, Relative Water Content, Proline, Soluble carbohydrates and Chlorophyll of Bread Wheat Cultivars. Journal of Animal and Plant Sciences 8: 1051-1060.
Kotagiri D., Kolluru V. (2017). Effect of Salinity Stress on the Morphology & Physiology of Five Different Coleus Species. Biomedical & Pharmacology Journal 10: 1639-1649.
López-Villafranco M., Aguilar-Contreras A., Aguilar-Rodríguez S., Xolalpa-Molina S. (2017). Las Verbenaceae Empleadas como Recurso Herbolario en México: Una Revisión Etnobotánica- Médica. Polibotánica 44: 195-216.
Martínez-Hernández R., Villa-Castorena M., Catalán-Valencia E., Inzunza-Ibarra M. (2015). Production of Oregano (Lippia graveolens Kunth) Seedlings from Seeds in Nursery for transplanting. Revista Chapingo Serie Ciencias Forestales y del Ambiente 23: 61-73.
Mata-González R., Meléndez-González R. (2005). Growth Characteristics of Mexican Oregano (Lippia Berlandieri Schauer) Under Salt Stress. The Southwestern Naturalist 50: 1-6.
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15: 473-497.
Mzabri I., Legsayer M., Kouddane N., Boukroute A., Berrichi A. (2017). Salt Stress Effects on Some Morphological, Physiological and Biochemical Parameters of Saffron Plant (Crocus sativus L.) in Eastern Morocco. Journal of Materials and Environmental Sciences 8: 4894-4901.
Pascual M., Slowing K., Carretero E., Sánchez Mata D., Villar A. (2001). Lippia: Traditional Uses, Chemistry and Pharmacology: A Review. Journal of Ethnopharmacology 76: 201-214.
Pereira D., Valentão P., Pereira J., Andrade P. (2009). Phenolics: From Chemistry to Biology. Molecules 14: 2202-2211.
Rahdari P., Hoseini S. (2012). Drought stress: A Review. International Journal of Agronomy and Plant Production 3: 443-336.
Rana R., Rehman S., Ahmed J., Bilal M. (2013). A Comprehensive Overview of Recent Advances in Drought Stress Tolerance Research in Wheat (Triticum aestivum L.) Asian Journal of Agriculture and Biology 1: 29-37.
Razzaq A., Ali A., Bin Safdar L., Zafar M., Rui Y., Shakeel A., Shaukat A., Ashraf M., Gong W., Yuan Y. (2019). Salt Stress Induces Physiochemical Alterations in Rice Grain Composition and Quality. Journal of Food Science 0: 1-7.
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice- Evans C. (1999). Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radical Biology and Medicine 26: 1231-1237.
Rivera G., Bocanegra-García V., Monge A. (2010). Traditional Plants as Source of Fundamental Foods: A Review. CyTA-Journal of Food 8: 159-167.
Rivero-Pérez M., Muñiz P., González-Sanjosé M. (2007). Antioxidant Profile of Red Wines Evaluated by Total Antioxidant Capacity, Scavenger Activity, and Biomarkers of Oxidative Stress Methodologies. Journal of Agricultural and Food Chemistry 55: 5476-5483.
San Miguel-Chávez R. (2017). Phenolic Antioxidant Capacity: A Review of the State of the Art. En: Phenolic Compounds- Biological Activity. Soto-Hernández M., Palma-Tenango M., García-Mateos M. (ed.), p 59-74.
Sarker U., Islam M., Oba S. (2018). Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity in Amaranthus tricolor leaves. PLoS ONE 13: e0206388.
Sarker U., Oba S. (2019). Salinity Stress Enhances Color Parameters, Bioactive Leaf Pigments, Vitamins, Polyphenols,Flavonoids and Antioxidant Activity in Selected Amaranthus Leafy Vegetables. Journal of the Science of Food and Agriculture 99: 2275-2284.
Selmar D. (2008). Potential of Salt and Drought Stress to Increase Pharmaceutical Significant Secondary Compounds in Plants. Landbauforschung-vTI Agriculture and Forestry Research 1/2: 139-144.
Sharif I., Aleem S., Farooq J., Rizwan M., Younas A., Sarwar S., Chohan S. (2019). Salinity Stress in Cotton: Effects, Mechanism of Tolerance and its Management Strategies. Physiology and Molecular Biology of Plants 25:807-820.
Sharma I., Ching E., Saini S., Bhardwaj R., Pati P. (2013). Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiology and Biochemistry 69. pp17-26.
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. (2019). Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 24: 2452.
Singleton V., Rossi J. (1965). Colorimetry of Total Phenolics with Phosphomolyb-diphosphotungstic Acid Reagents. American Journal of Enology and Viticulture 16: 144- 158.
Sytar O., Barki S., Zivcak M., Brestic M. (2018). The involvement of different secondary metabolites in salinity tolerance of crops. En: Salinity responses and tolerance in plants, vol. 2. Kumat V. (ed.), pp 21-48. Berlin: Springer International Publishing AG, part of Springer Nature.
Valifard M., Mohsenzadeh S., Kholdebarin B., Rowsan V. (2014). Effects of Salt Stress on Volatile Compounds, Total Phenolic Content and Antioxidant Activities of Salvia mirzayanii. South African Journal of Botany 93: 92-97.
Zhong Y., Shahidi F. (2012). Methods for the Assessment of Antioxidant Activity in Foods. En: Handbook of Antioxidants for Food Preservation. Shahidi F. (ed.), pp 287-333. Woodhead Publishing.
Zlatev Z., Lidon C. (2012). An Overview on Drought Induced Changes in Plant Growth, Water Relations and Photosynthesis. Emirates Journal of Food and Agriculture 24: 57-72.
Zhou Y., Tang N., Huang L., Zhao Y., Tang X., Wang K. (2018). Effects of Salt Stress on Plant Growth, Antioxidant Capacity, Glandular Trichome Density, and Volatile Exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences 19: 252.
Downloads
Published
How to Cite
Issue
Section
License
The journal Biotecnia is licensed under the Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.