Breve aproximación a la naturaleza genómica de Moniliophthora roreri CPMRT01 aislado de cacao en Tabasco, México//Brief approach to the genomic nature of Moniliophthora roreri CPMRT01 isolated from cocoa in Tabasco, Mexico
DOI:
https://doi.org/10.18633/biotecnia.v22i2.1244Palabras clave:
basidiomiceto fitopatógeno, genoma, metabolismo secundario, moniliasis, reconstrucción filogenéticaResumen
Moniliophthora roreri es un hongo de suma importancia agroeconómica principalmente en el continente americano, ya que es el agente causal de la moniliasis de al menos cuatro especies de cacao. El genoma de este hongo consta de aproximadamente 52,3 Mpb, cuyos genes de interés se reagrupan dependiendo de su naturaleza (e.g. hemibiotróficos, biotróficos y fitopatogénicos). Por otro lado, Moniliophthora es capaz de metabolizar proteínas involucradas en procesos de infección, regulación metabólica y mecanismos de defensa. El objetivo principal de este trabajo fue caracterizar un fragmento del genoma de una cepa de M. roreri, previamente aislada de cacao en el Estado de Tabasco, México. Para ello, se implementó una estrategia experimental que involucró la generación de bibliotecas genómicas así como una secuenciación de regiones nucleotídicas consenso, predicción heurística-funcional e identificación de hipotéticos dominios conservados, respectivamente. El estudio permitió explorar alrededor del 16 % del genoma de la cepa. Entre los resultados y conclusiones obtenidas más interesantes, se generaron reconstrucciones filogenéticas de máxima identidad respecto a un genoma de referencia y, cuyos transcritos se encontrarían involucrados en procesos de fitopatogenicidad y metabolismo secundario, identificándose aparentes dominios proteicos y sitios catalíticos activos en algunos de los cóntigos estudiados.
ABSTRACT
Moniliophthora roreri is a fungus of extreme agroeconomic importance mainly in the American continent, since it is the causal agent of moniliasis of at least four cocoa species. The genome of this fungus consists of approximately 52,3 Mbp, whose genes of interest may be regrouped depending on their nature (e.g. hemibiotrophics, biotrophics and phytopathogenics). On the other hand, Moniliophthora is liable to metabolize proteins involved in infection processes, metabolic regulation and defense mechanisms. The aim of this work was to partially characterize a fragment of the genome of a M. roreri strain previously isolated from cocoa in the State of Tabasco, Mexico. To reach this goal, an experimental strategy was implemented that involved the generation of genomic libraries as well as a consensus nucleotide region sequencing, functional-heuristic prediction and identification of hypothetical conserved domains, respectively. The study allowed to explore about 16 % of the strain´s genome. Among the most interesting results and conclusions obtained, phylogenetic reconstructions of maximum identity respect to the reference genome were reached, whose transcripts would be involved in phytopathogenic processes and secondary metabolism, identifying apparent protein domains and active catalytic sites in some of the contigs under study.
Descargas
Citas
Aime, M.C., Phillips-Mora, W. 2005. The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia. 97: 1012-1022.
Barbosa, C.S., Fonseca, R.R. da, Batista, T.M., Barreto, M.A., Argolo, C.S., Carvalho, M.R. de, Amaral, D.O.J., Silvia, E.M. de A., Arevalo-Gardini, E., Hidalgo, K.S., Franco, G.R., Pirovani, C.P., Micheli, F., Gramacho, K.P. 2018. Genome sequence and effectorome of Moniliophthora perniciosa and Moniliophthora roreri subpopulations. BMC Genomics. 19: 509.
Carver, T.J., Rutherford, K.M., Berriman, M., Rajamdream, M.-A., Barrell, B.G., Parkhill, J. 2005. ACT: the Artemis comparison tool. Bioinformatics. 16: 3422-3423.
Costa, G.G.L., Cabrera, O.G., Tiburcio, R.A., Medrano, F.J., Carazzolle, M.F., Thomazella, D.P.T., Schuster S.C., Carlson, J.E., Guiltinan, M.J., Bailey, B.A., Mieczkowski, P., Pereira, G.A.G., Meinhardt, L.W. 2012. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao. Fungal Biology. 116: 551-562.
Evans, H.C. 1981. Pod rot of cacao caused by Moniliophthora (Monilia) roreri. 1st Edition. Phytopathological papers. Commonwealth Mycological Institute. London, UK.
Ewels, P., Magnusson, M., Lundin, S., Kaller, M. 2016. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 32: 3047-3048.
Garcia, O., Macedo, J.A., Tiburcio, R., Zaparoli, G., Rincones, J., Bittencourt, L.M., Ceita, G.O., Micheli, F., Gesteira, A., Mariano, A.C., Schiavinato, M.A., Medrano, F.J., Meinhardt, L.W., Pereira, G.A.G., Cascardo, J.C. 2007. Characterization of necrosis and ethylene inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches´ broom in Theobroma cacao. Mycological Research. 111: 443-455.
Hipólito-Romero, E., Carcaño-Montiel, M.G., Ramos-Prado, J.M., Vázquez-Cabañas, E.A., López-Reyes, L., Ricaño-Rodríguez, J. 2017. Efecto de inoculantes bacterianos edáficos mixtos en el desarrollo temprano de cultivares mejorados de cacao (Theobroma cacao L) en un sistema agroforestal tradicional del norte de Oaxaca, México. Revista Argentina de Microbiologia. 49: 356-365.
Jones, J.D., Dangl J.L. 2006. The plant immune system. Nature. 444: 323-329.
Kumar, S., Stecher, G., Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33: 1870-1874.
Laetsch, D.R., Blaxter, M.L. 2017. BlobTools: Interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. F1000Research. 6: 1287.
Lin, R.-C., Ding, Z.-S., Li, L.-B., Kuang, T.-Y. 2001. A rapid and efficient DNA minipreparation suitable for screening transgenic plants. Plant Molecular Biology Reporter. 19: 379a-379e.
Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., Wang, Z., Yamashita, R.A., Zhang, D., Zheng, C., Geer, L.Y., Bryant, S.H. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Research. 45: D200-D203.
MacCallum, I., Przybylski, D., Gnerre, S., Burton, J., Shlyakhter, I., Gnirke, A., Malek, J., McKernan, K., Ranade, S., Shea, T.P., Williams, L., Young, S., Nusbaum, C., Jaffe, D.B. 2009. ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads. Genome Biology. 10: R103.
Meinhardt, L.W., Gilson Costa, G., Thomazella, D.P.T., Teixeira, P.J., Falsarella Carazzolle, M., Schuster, S.C., Carlson, J.E., Guiltinan, M.J., Mieczkowski, P., Farmer, A., Ramaraj, T., Crozier, J., Davis, R.E., Shao, J., Melnick, R.L., Pereira, G.A.G., Bailey, B.A. 2014. Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophtora roreri, which causes frosty pod rot disease of cocoa: mechanisms of the biotrophic and necrotrophic phases. BMC Genomics. 15: 1-25.
Mondego, J.M.C., Carazzolle, M.F., Costa, G.G.L., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Carraro, D.M., Cunha, A.F., Carrer, H., Vidal, R.O., Estrela, R.C., Garcia, O., Thomazella, D.P.T., Oliveira, B.V., Pires, A.B.L., Rio, M.C.S., Araujo, M.R.R., de Moraes, M.H., Castro, L.A.B., Gramacho, K.P., Goncalves, M.S., Moura Neto, J.P., Goes Neto, A., Barbosa, L.V., Guiltinan, M.J.,Bailey, B.A., Meinhardt, L.W., Cascardo, J.C.M., Pereira, G.A.G. 2008. A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics. 9: 548.
Motamayor, J.C., Mockaitis, K., Schmutz, J., Haiminen, N., Livingstone, D., Cornejo, O., Findley, S.D., Zheng, P., Utro, F., Royaert, S., Saski, C., Jenkins, J., Podicheti, R., Zhao, M., Scheffler, B.E., Stack, J.C., Feltus, F.A., Mustiga, G.M., Amores, F., Phillips, W., Marelli, J.P., May, G.D., Shapiro, H., Ma, J., Bustamante, C.D., Schnell, R.J., Main, D., Gilbert, D., Parida, L., Kuhn, D.N. 2013. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biology. 14(6): R53.
Phillippy, A.M., Schatz, M.C., Pop, M. 2008. Genome assembly forensics: Finding the elusive mis-assembley. Genome Biology. 9: R55.
Phillips-Mora, W., Aime, M.C., Wilkinson, M.J. 2007. Biodiversity and biogeography of the cacao (Theobroma cacao) pathogen Moniliophthora roreri in tropical America. Plant Pathology. 56: 911-922.
Phillips-Mora, W., Coutiño, A., Ortiz, C.F., López, A.P., Hernández, J., Aime, M.C. 2006. First report of Moniliophthora roreri causing frosty pod rod (moniliasis disease) of cocoa in Mexico. Plant Pathology. 55: 584.
Prados-Rosales, R.C., Roldan-Rodriguez, R., Serena, C., Lopez-Berges, M.S., Guarro, J., Martinez-del-Pozo, A., Di Pietro, A. 2012. A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. The Journal of Biological Chemistry. 287: 21970-21979.
Ricaño-Rodríguez, J., Ramos-Prado, J.M., Cocoletzi-Vásquez, E., Hipolito-Romero, E. 2018. El estudio genomico del cacao (Theobroma cacao L.); breve recopilacion de sus bases conceptuales. Agroproductividad. 11(9): 29-35.
Saitou, N., Nei, M. 1987. The Neighbor-Joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 4: 406-425.
Sneath P.H.A., Sokal R.R. 1973. Numerical Taxonomy. 1st ed. Freeman, San Francisco.
Tamura, K., Nei, M., Kumar, S. 2004. Prospects for inferring very large phylogenies by using the Neighbor-Joining method. Proceedings of the National Academy of Sciences (USA). 101: 11030-11035.
Tamura, K., Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526.
Teixeira, P.J.P.L., Thomazella, D.P., Reis, O., do Prado, P.F., do Rio, M.C., Fiorin, G.L., Jose, J., Costa, G.G., Negri, V.A., Mondego, J.M., Mieckzkowski, P., Pereira, G.A. 2014. High-resolution transcript profiling of the atypical biotrophic interaction between Theobroma cacao and the fungal pathogen Moniliophthora perniciosa. Plant Cell. 11: 4245-4269.
Teixeira, P.J.P.L., Thomazella, D.P.T., Vidal, R.O., Do Prado, P.F.V., Reis, O., Baroni, R.M., Franco, S.F., Mieczkowski, P., Pereira, G.A.G., Mondego, J.C.M. 2012. The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao. Plos One. 7(9): e45929.
Tiburcio, R.A., Lacerda Costa, G.G., Falsarella Carazzolle, M., Costa Mondeho, J.M., Schuster, S.C., Carlson, J.E., Guiltinan, M.J., Bailey, B.A., Mieczkowski, P., Meinhardt, L.W., Guimaraes Pereira, G.A. 2010. Genes acquired by horizontal transfer are potentially involved in the evolution of phytopathogenicity in Moniliophthora perniciosa and Moniliophthora roreri, two of the major pathogens of cacao. Journal of Molecular Evolution. 70: 85-97.
Torres-de la Cruz, M., Ortiz-García, F.F., Nava-Díaz, C., de la Cruz-Pérez, A. 2016. Confirmación morfológica y molecular de Moniliophthora roreri, agente causal de la moniliasis del cacao (Theobroma cacao) en Tabasco, México. En: Perspectiva Científica desde la UJAT. W.M. Contreras Sánchez (ed.), pp 407-412. Universidad Juárez Autónoma de Tabasco. México.
Waterhouse, R.M., Seppey, M., Simao, F.A., Manni, M., Loannidis, P., Klioutchnikov, G., Kriventseva, E.V., Zdovnov, E.M. 2017. BUSCO Applications from Quality Assesments to Gene Prediction and Phylogenomics. Molecular Biology and Evolution. 35: 543-548.
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)