Impacto en la formación de acrilamida a partir de aditivos de especias culinarias con actividad antioxidante//Impact on acrylamide formation from culinary spice additives with antioxidant activity
DOI:
https://doi.org/10.18633/biotecnia.v22i2.1254Palabras clave:
especias culinarias, antioxidantes, aditivos, acrilamida, cromatografía de líquidosResumen
Las especias culinarias son fuente importante de compuestos fenólicos que presentan actividad antioxidante, se han utilizado desde hace siglos para la conservación de alimentos y ampliar su vida de anaquel, así como mitigar los efectos negativos de la exposición de los alimentos a altas temperaturas. El uso de tratamientos térmicos en los alimentos ricos en carbohidratos como las papas fritas puede provocar la formación de diversos productos de la reacción de Maillard o glicotoxinas, entre ellos la acrilamida, la cual presenta actividad carcinogénica. Existen algunos estudios que reportan que la aplicación de una película de especias culinarias con actividad antioxidante puede inhibir la formación de acrilamida durante el freído de papas. Sin embargo, solo algunas investigaciones reportan lo contrario. El objetivo del presente estudio fue evaluar el efecto antioxidante de cinco aditivos comestibles elaborados con distintas especias culinarias sobre el contenido de acrilamida en papas fritas tipo a “la Francesa”. Los análisis fueron realizados mediante cromatografía de líquidos de alta resolución-espectrometría de masas. Los resultados indican que los cinco aditivos provocaron un efecto discordante, pues no lograron inhibir la formación de acrilamida como se esperaba sino que por el contrario promovieron su formación.
ABSTRACT
Culinary spices are an important source of phenolic compounds that have antioxidant activity, they have been used for centuries to preserve food and extend their shelf life, as well as mitigate the negative effects of food exposure to high temperatures. The use of heat treatments in carbohydrate- rich foods such as French fries can cause de formation of various products of the Maillard reaction or glycotoxins, including acrylamide, which has carcinogenic activity. There are some studies that report that the application of a film of species culinary with antioxidant activity can inhibit acrylamide formation during potato frying. However, only some research reports otherwise. The objective of the present study was to evaluate the antioxidant effect of five edible additives made with different culinary spices on the acrylamide content in French fries. The analyzes were performed by high performance liquid chromatography-mass spectrometry. The results indicate that the five additives caused a discordant effect, since the failed to inhibit acrylamide formation as expected but instead promoted its formation.
Descargas
Citas
Anese, M., Nicoli, M. C., Verardo, G., Munari, M., Mirolo, G. y Bortolomeazzi, R. 2014. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans. Food Chemistry. 145 (7): 168-172.
ANIAME (Asociacion Nacional de Industriales de Aceites y Mantecas Comestibles, A.C.). 2009. Freir, los acidos grasos y la salud. Revista ANIAME. 64 (13): 14, 15 y 23.
Badui-Dergal, S. y Valdés-Martínez, S. E. 2006. Química de los alimentos. Capitulo 2: Hidratos de carbono. Cuarta edición. Editorial Pearson Addison Wesley, 29-109 p.
Bassama, J., Brat, P., Bohuon, P., Boulanger, R. y Gunata, Z. 2010. Study of acrylamide mitigation in model system: Effect of pure phenolic compounds. Food Chemistry. 123: 558-562.
Bello-Gil, D., Carrera-Bocourt, E. y Díaz-Maqueira, Y. 2006. Determinación de azucares reductores totales en jugos mezclados de cana de azúcar utilizando el método del acido 3,5 dinitrosalicilico. ICIDCA (Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar). 2: 45-50.
Biedermann, M., Noti, A., Biedermann‐Bremm, S., Noti, A., Grob, K., Egli, P. y Mandli, H. 2002. Experiments on acrylamide formation and possibilities to decrease the potential of acrylamide formation in potatoes. Mitteilungen aus Lebensmitteluntersuchung und Hygiene. 93: 668‐687.
Brewer, M. S. 2011. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety. 10: 221-247.
Budryn, G., Z., Elewicz, D., Nebesny, E., Oracz, J. y Krysiak, W. 2013. Influence of addition of green tea and green coffee extracts on the properties of fine yeast pastry fried products. Food Research International. 50: 149-160.
Cai, Y., Zhang, Z., Jiang, S., Yu, M., Huang, C., Qiu, R. y Zhou, H. 2014. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. Journal of Hazardous Materials. 268: 1-5.
Cao, G. y Prior, R. 1999. Measurement of Oxygen Radical Absorbance Capacity in Biological samples. Oxidants and Antioxidants. Methods in Enzymol. 299: 50-62.
Capuano, E. y Fogliano, V. 2011. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology. 44 (4): 793-810.
Chen, H. y Gu, Z. 2014. Effect of Ascorbic Acid on the Properties of Ammonia Caramel Colorant Additives and Acrylamide Formation. Journal of Food Science. 79: C1678-C1682.
Cheng, K., Zeng, X., Tang, Y. S., Wu, J., Liu, Z. y Sze, K. 2009. Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Chemical Research in Toxicology. 22: 1483-1489.
Cheng, K., Shi, J., Ou, S., Wang, M. y Jiang, Y. 2010. Effects of fruit extracts on the formation of acrylamide in model reactions and fried potato crisps. Journal of Agricultural and Food Chemistry. 58: 309-312.
Comision Europea (EU). 2017. Commission Regulation 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Official Journal of the European Union. L304: 24-44.
Constantinou, C. y Koutsidis, G. 2016. Investigations on the effect of antioxidant type and concentration and model system matrix on acrylamide formation in model Maillard reaction systems. Food Chemistry. 197: 769-775.
EFSA. 2015. Scientific opinion on acrylamide in food. EFSA Journal. 13: 4104.
Farkas, B. E., Singh, R. P. y Rumsey, T. R. 1996. Modeling heat and mass transfer in immersion frying. Part I: Model development. Journal of Food Engineering. 29: 211-226.
Food Drink Europe. 2013. The acrylamide toolbox, Vol. 57. Food Drink Europe.
Gibis, M. y Weiss, J. 2012. Antioxidant capacity and inhibitory effect of grape seed and rosemary extract in marinades on the formation of heterocyclic amines in fried beef patties. Food Chemistry. 134: 766-774.
Guicin, I., Buyukokuroglu, M. E. y Kufrevioglu, O. I. 2003. Metal chelating and hydrogen peroxide scavenging effects of melationin. Journal of Pineal Research. 34: 278-281.
Hamzalioglu, A. y Gokmen, V. 2012. Role of bioactive carbonyl compounds on the conversion of asparagine into acrylamide during heating. European Food Research and Technology. 235 (6): 1093-1099.
Hamzalioglu, A., Mogol, B., Lumaga, R., Fogliano, V. y Gokmen, V. 2013. Role of curcumin in the conversion of asparagine into acrylamide during heating. Amino Acids. 44 (6): 1419-1426.
Hinneburg, I., Damien Dorman, H.J. y Hiltunen, R. 2006. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry. 97: 122-129.
Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. y Prior, R. 2002. High-throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. Journal of Agricultural and Food Chemistry. 50: 4437-4444.
Huang, M., Wang, Q., Chen, X. y Zhang, Y. 2017. Unravelling effects of flavanols and their derivatives on acrylamide formation via support vector machine modelling. Food Chemistry. 221: 178-186.
Jin, C., Wu, X. y Zhang, Y. 2013. Relationship between antioxidants and acrylamide formation: A review. Food Research International. 51 (2): 611-620.
Kaefer, Ch. M. y Milner, J. A. 2008. The role of herbs and spices in cancer prevention. Journal of Nutritional Biochemistry. 19: 347-361.
Kalita, D., Holm, G. D. y Jayanty, S. S. 2013. Role of polyphenols in acrylamide formation in the fried products of potato tubers with colored flesh. Food Research International. 54: 753-759.
Karre, L., Lopez, K. y Getty, K. J. 2013. Natural antioxidants in meat and poultry products. Meat Science. 94: 220-227.
Kotsiou, K., Tasioula-Margari, M., Capuano, E. y Fogliano, V. 2011. Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system. Food Chemistry. 124: 242-247.
Kotsiou, K., Tasioula-Margari, M., Kukurova, K. y Casanova, Z. 2010. Impact of oregano and virgin olive oil phenolic compounds on acrylamide content in a model system and fresh potatoes. Food Chemistry. 123: 1149-1155.
Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Garcia-Padilla, M. C. y Fett, R. 2004. Actividad antioxidante de pigmentos antiocianicos. Revista Brasileira de Ciencia y Tecnologia de Alimentos. 24 (4): 691-693.
Li, D., Chen, Y., Zhang, Y., Lu, B., Jin, C. y Wu, X. 2012. Study on mitigation of acrylamide formation in cookies by 5 antioxidants. Journal of Food Science. 77: C1144-C1149.
Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H. y Hu, X. 2015. Role of plant polyphenols in acrylamide formation and elimination. Food Chemistry. 186: 46-53.
Londońo-Londońo, J. 2012. Antioxidantes: Importancia biológica y métodos para medir su actividad. En: Métodos para la medición de la actividad antioxidante. Corporación Universitaria Lasallista (ed.), pp 129-162.
Madsen, H. L. y Bertelsen, G. 1995. Spices as antioxidants. Trends in Food Science and Technology. 6: 271-277.
Medeiros Vinci, R., Mestdagh, F., Van Poucke, C., Kerkaert, B., de Muer, N. y Denon, Q. 2011. Implementation of acrylamide mitigation strategies on industrial production of French fries: Challenges and pitfalls. Journal of Agricultural and Food Chemistry. 59: 898-906.
Morales, F. J. y Jimenez-Perez., S. 2001. Free radical scavening capacity of Maillard reaction products as related to colour and fluorescence. Journal of Agricultural and Food Chemistry. 72: 119-125.
Morales, G., Jimenez, M., Garcia, O., Mendoza, M. R. y Beristain, C. I. 2014. Effect of natural extracts on the formation of acrylamide in fried potatoes. Food Science and Technology. 58: 587-593.
Musa, O. M. y Arslan, D. 2011. Antioxidant effect of essential oils of rosemary, clove and cinnamon on hazelnut and poppy oils. Food Chemistry. 129: 171-174.
Ou, S., Shia, J., Huanga, C., Zhang, G., Teng, J., Jiang, Y. y Yang, B. 2010. Effect of antioxidants on elimination and formation of acrylamide in model reaction systems. Journal of Hazardous Materials. 182: 863-868.
Oral, R. A., Dogan, M. y Sarioglu, K. 2014. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chemistry. 142: 423 429.
Palazoğlu, T. K. y Gokmen, V. 2008. Development and experimental validation of a frying model to estímate acrylamide levels in Frenchfries. Journal of Food Science. 73: E109-E114.
Pedreschi, F. y Moyano, P. 2005. Effect of pre-drying on texture and oil uptake of potato chips. LWT-Food Science and Technology. 38: 599-604.
Puangsombat, K. y Smith, J. S. 2010. Inhibition of heterocyclic amine formation in beef patties by ethanolic extracts of rosemary. Journal of Food Science. 75 (2): 40-47.
Puangsombat, k., Jirapakkul, W. y Smith, S. 2011. Inhibitory activity of Asian spices on heterocyclic amines formation in cooked beef patties. Journal of Food Science. 76 (8): 174-180.
Qi, Y., Zhang, H., Wu, G., Zhang, H., Gu, L., Wang, L., Qian, H. y Qi, X. 2018. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry. 250: 98-104.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. y Rice- Evans, C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine. 26.
Rodríguez, R. I., Ramos, S., Bravo, L., Goya, L. y Martin, M. A. 2011. Procyanidin B2 and a cocoa polyphenolic extract inhibit acrylamide-induced apoptosis in human Caco-2 cells by preventing oxidative stress and activation of JNK pathway. The Journal of Nutritional Biochemistry, 22 (12): 1186-1194.
Ruiz-Roca, B. 2009. Productos de la reacción de Maillard y su influencia en la absorción de hierro y cobre. Relación con la capacidad quelante de metales. Tesis Doctoral. Departamento de Fisiologia. Facultad de Farmacia. Universidad de Granada, España, 9-46 p.
Sanny, M., Jinap, S., Bakker, E. J., Van, B. M. A. J. S. y Luning, P. A. 2012. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments. Food Chemistry. 135: 2012-2020.
Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R. y Felker, P. 2005. Color, betalin pattern, and antioxidant properties of cactus pear (Optunia spp.) clones. Journal of Agricultural and Food Chemistry. 53 (2): 442-451.
Sumaya-Martínez, M. T., Padilla-Mendoza, E. P. y Sampedro-Perez, J. G. 2006. Un enfoque pendiente para la salud pública en México: productos tóxicos de la glaciación de proteínas en los alimentos. Revista Salud Publica y Nutricion. 7 (3): 1-7.
Sumner, J. B. y Sisler, E. B. 1944. A simple method for blood sugar. Archives of Biochemistry. 4: 333-336.
Vallverdu-Queralt, A., Regueiro, J., Martinez-Huelamo, M., Rinaldi Alvarenga, J. F., NetoLeal, L. y Lamuela-Raventos, R. M. 2014. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chemistry. 154: 299-307.
Van Der Fels-Klerx, H. J., Capuano, E., Nguyena, H. T., Atac Mogol, B., Kocadağlı, T., Goncuoğlu,Taş, N., Hamzalıoğlu., A., Van Boekel, M. A. J. S. y Gokmen, V. 2014. Acrylamide and 5 -hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature–time profile effects and kinetics. Food Research International. 57: 210-217.
Vattem, D. A. y Shetty, K. 2003. Acrylamide in food: A model for mechanism of formation and its reduction. Innovative Food Science & Emerging Technologies. 4 (3): 331-338.
Visioli, F. 2012. Olive oil phenolics: Where do we stand? Where should we go?. Journal of the Science of Food and Agriculture. 92: 2017-2019.
Wojdylo, A., Oszmiański, J. y Czemerys, R. 2007. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry. 105: 940-949.
Yuan, Y., Shu, C., Zhou, B., Qi, X. L., y Xiang, J. G. 2011. Impact of selected additives on acrylamide formation in asparagine/ sugar Maillard model systems. Food Research International. 44: 449-455.
Zhang, Y., Chen, J., Zhang, X., Wu, X. y Zhang, Y. 2006. Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries. Journal of Agricultural and Food Chemistry. 55(2): 523-528.
Zhang, Y., Chen, J., Zhang, X. L., Wu, X. Q. y Zhang, Y. 2007. Addition of antioxidant of bamboo leaves (AOB) effectively reduces acrylamide formation in potato crisps and French fries, Journal of Agricultural and Food Chemistry. 55: 523-528.
Zheng, W. y Lee, S. A. 2009. Well-done meat intake, heterocyclic amine exposure, and cancer risk. Nutrition and Cancer. 61 (4): 437-446.
Zhu, F., Cai, Y.Z., Ke, J. y Corke, H. 2011. Dietaryplantmaterialsreduceacrylamide formation in cookie and starch-based model systems. Journal of the Science of Food and Agriculture 91: 2477 -2483.
Publicado
Cómo citar
Número
Sección
Licencia
La revista Biotecnia se encuentra bajo la licencia Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)