Partición de proteína de lactosuero en un sistema de extracción acuosa en dos fases

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i3.1263

Palabras clave:

ATPE proteína/(NH4)2SO4, proteínas del suero de queso, inspección de alto rendimiento, separación de lactosa

Resumen

El lactosuero es un subproducto de la fabricación de queso que contiene proteínas que pueden recuperarse, pero están muy diluidas y en mezcla con lactosa, lo que limita su aprovechamiento. La técnica de extracción acuosa en dos fases (ATPE, por sus siglas en inglés) es un procedimiento con

potencial para separar proteínas. El objetivo fue evaluar el comportamiento de un sistema de extracción acuosa proteína-(NH4)2SO4 aplicado para la recuperación de proteínas de lactosuero, atendiendo la reducción de lactosa. Se construyó un diagrama binodal de fases mediante una técnica de inspección de alto rendimiento. Se prepararon soluciones de (NH4)2SO4 en concentraciones entre 22 y 40 % usando lactosuero como disolvente. El volumen de la fase superior de los sistemas fue menor que el de la inferior, pero el incremento de (NH4)2SO4 causó aumento gradual de la fase superior. La proteína de lactosuero se concentró en mayor cantidad en la fase superior alrededor del 80 %, en tanto que más del 79 % de la lactosa se separó en la fase inferior. La técnica de ATPE tiene potencial para separar proteínas del lactosuero y la mejor alternativa se basa en sistemas con 34 % de (NH4)2SO4.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Salvador Valle Guadarrama, Universidad Autónoma Chapingo

Profesor Investigador-Departamento de Ingeniería Agroindustrial

Ricardo Domínguez Puerto, Universidad Autónoma Chapingo

Profesor-Investigador Universidad Autónoma Chapingo, Departamento de Preparatoria Agrícola

Diana Guerra Ramírez, Universidad Autónoma Chapingo

Profesora-Investigadora Universidad Autónoma Chapingo, Departamento de Preparatoria Agrícola

Citas

Alcântara, L.A.P., Minim, L.A., Minim, V.P.R., Bonomo, R.C.F., da Silva, L.H.M., y da Silva, M.D.C.H. 2011. Application of the response surface methodology for optimization of whey protein partitioning in PEG/phosphate aqueous two-phase system. Journal of Chromatography B, 879, 1881–1885. DOI:10.1016/j.jchromb.2011.05.007

Balasubramaniam, D., Wilkinson, C., Cott, K. V., Zhang, C. 2003. Tobacco protein separation by aqueous two-phase extraction. Journal of Chromatography A, 989, 119–129.

Bensch, M., Selbach, B. y Hubbuch, J. 2007. High throughput screening techniques in downstream processing: Preparation, characterization and optimization of aqueous two-phase systems. Chemical Engineering Science, 62, 2011–2021.

Capezio, L., Romanini, D., Picó, G. A. y Nerli, B. 2005. Partition of whey milk proteins in aqueous two-phase systems of polyethylene glycol–phosphate as a starting point to isolate proteins expressed in transgenic milk. Journal of Chromatography B, 819, 25–31.

da Rocha, P. P., Barbosa, M. A., Rodrigues, D. L. L., Moreira, M. C. R., y Mendes, S. L. H. Hespanhol, D. S. M. C. 2011. Fluid Phase Equilibria Phase diagram and thermodynamic modeling of PEO + organic salts + H2O and PPO + organic salts + H2O aqueous two-phase systems. Fluid Phase Equilibria, 305, 1–8. https://doi.org/10.1016/j.fluid.2011.02.013

Domínguez-Puerto, R., Valle-Guadarrama, S., Guerra-Ramírez, D. y Hahn-Schlam, F. 2018. Purification and concentration of cheese whey proteins through aqueous two phase extraction. CyTA - Journal of Food, 16, 452–459.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. y Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28, 350–356.

Duong-Ly, K. C. y Gabelli, S. B. 2014. Chapter Seven - Salting out of Proteins Using Ammonium Sulfate Precipitation. In: LORSCH, J. (ed.) Methods in Enzymology. Academic Press.

Gomes, J., Ferreira, S., Reinert, O., Gandol, R., Ayra, L., Santos, V., et al. 2017. Fluid phase equilibria evaluation of salting-out effect in the liquid e liquid equilibrium of aqueous two-phase systems composed of 2-propanol and Na2SO4/MgSO4 at different temperatures. Fluid Phase Equilibria, 450, 184–193. https://doi.org/10.1016/j.fluid.2017.08.001

Jara, F. y Pilosof, A. M. R. 2011. Partitioning of α-lactalbumin and β-lactoglobulin in whey protein concentrate/hydroxypropylmethylcellulose aqueous two-phase systems. Food Hydrocolloids, 25, 374–380.

Jelen, P., y Tossavainen, O. 2003. Low lactose and lactose-free milk and dairy products – prospects, technologies and applications. Australian Journal of Dairy Technology, 58, 161-165.

Jiang, Bin; Zhang, Xiaoqing; Yuan, Yongqiang; Qu, Yuxiao; Feng, Zhibiao. 2017. Separation of antioxidant peptides from pepsin hydrolysate of whey protein isolate by ATPS of EOPO co-polymer (UCON)/phosphate. Scientific Reports, 7 (1), 13320, 1–12. DOI: 10.1038/s41598-017-13507-9

Kalaivani, S., y Regupathi, I. 2015. Synergistic extraction of α-lactalbumin and β-lactoglobulin from acid whey using aqueous biphasic system: process evaluation and optimization. Separation and Purification Technology, 146, 301–310. doi:10.1016/j.seppur.2015.03.057

Kamizake, N. K. K., Gonçalves, M. M., Zaia, C. T. B. V. y Zaia, D. A. M. 2003. Determination of total proteins in cow milk powder samples: a comparative study between the Kjeldahl method and spectrophotometric methods. Journal of Food Composition and Analysis, 16, 507–516.

Lobato-Calleros, C., Lozano-Castañeda, I. y Vernon-Carter, E. J. 2009. Textura y microestructura de quesos tipo panela bajos en grasa y en colesterol: diferentes metodologías. Ingeniería Agrícola y Biosistemas, 1.

Madureira, A. R., Pereira, C. I., Gomes, A. M. P., Pintado, M. E. y Xavier Malcata, F. 2007. Bovine whey proteins – Overview on their main biological properties. Food Research International, 40, 1197–1211.

Merchuk, J. C., Andrews, B. A. y Asenjo, J. A. 1998. Aqueous two-phase systems for protein separation: Studies on phase inversion. Journal of Chromatography B: Biomedical Sciences and Applications, 711, 285–293.

Mokhtarani, B., Mortaheb, H. R., Mafi, M., y Amini, M. H. 2011. Partitioning of α-lactalbumin and β-lactoglobulin in aqueous two-phase systems of polyvinylpyrrolidone and potassium phosphate. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences, 879(11-12), 721–726. DOI: 10.1016/j.jchromb.2011.02.007

Murillo-Martínez, M. M., Tello-Solís, S. R., García-Sánchez, M. A., y Ponce-Alquicira, E. 2013. antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase. Journal of Food Science, 78(4), M560–M566. https://doi.org/10.1111/1750-3841.12078

Nandini, K. E., y Rastogi, N. K. 2011. Integrated Downstream Processing of Lactoperoxidase from Milk Whey Involving Aqueous Two-Phase Extraction and Ultrasound-Assisted Ultrafiltration. Applied Biochemistry and Biotechnology, 163(1), 173–185. DOI: 10.1007/s12010-010-9026-9

Patel, S. 2015. Emerging trends in nutraceutical applications of whey protein and its derivatives. Journal of Food Science and Technology, 52(11), 6847–6858. https://doi.org/10.1007/s13197-015-1894-0

Pereira Alcântara, L. A., Vieira Amaral, I., Ferreira Bonomo, R. C., Mendes da Silva, L. H., Hespanhol da Silva, M. d. C., Rodrigues Minim, V. P., y Minim, L. A. 2014. Partitioning of α-lactalbumin and β-lactoglobulin from cheese whey in aqueous two-phase systems containing poly (ethylene glycol) and sodium polyacrylate. Food and Bioproducts Processing, 92, 409–415. https://doi.org/10.1016/j.fbp.2013.09.006

Perumalsamy, M., y Murugesan, T. (2012). Extraction of cheese whey proteins (α-lactalbumin and β-lactoglobulin) from dairy effluents using environmentally benign aqueous biphasic system. International Journal of Chemical and Environmental Engineering, 3(1), 50–54.

Prazeres, A. R., Carvalho, F. y Rivas, J. 2012. Cheese whey management: A review. Journal of Environmental Management, 110, 48–68.

Raja, S., Murty, V. R., Thivaharan, V., Rajasekar, V. y Ramesh, V. 2011. Aqueous two phase systems for the recovery of biomolecules–a review. Science and Technology, 1, 7–16.

Rodríguez-Salazar, N., y Valle-Guadarrama, S. 2020. Separation of phenolic compounds from roselle (Hibiscus sabdariffa) calyces with aqueous two-phase extraction based on sodium citrate and polyethylene glycol or acetone. Separation Science and Technology (Philadelphia), 55(13), 2313–2324. https://doi.org/10.1080/01496395.2019.1634730

Rosa, P. A. J., Ferreira, I. F., Azevedo, A. M., y Aires-Barros, M. R. 2010. Aqueous two-phase systems: A viable platform in the manufacturing of biopharmaceuticals. Journal of Chromatography A, 1217(16), 2296–2305. https://doi.org/10.1016/j.chroma.2009.11.034

Sadeghi, F., Kadkhodaee, R., Emadzadeh, B., y Nishinari, K. 2021. Effect of sucrose on phase and flow behavior of protein-polysaccharide mixtures. Food Hydrocolloids, 113(November 2020), 106455. https://doi.org/10.1016/j.foodhyd.2020.106455

Sadeghi, R., y Maali, M. 2016. Toward an understanding of aqueous biphasic formation in polymer-polymer aqueous systems. Polymer, 83, 1–11. https://doi.org/10.1016/j.polymer.2015.11.032

SAS Institute, Inc. 1999. SAS/STAT® User’s Guide, Version 8. SAS Institute Inc., Cary, NC, USA. 3884 p.

Spyropoulos, F., Portsch, A. y Norton, I. T. 2010. Effect of sucrose on the phase and flow behaviour of polysaccharide/protein aqueous two-phase systems. Food Hydrocolloids, 24, 217–226.

Suarez Ruiz, C. A., Baca, S. Z., Van Den Broek, L. A. M., Van Den Berg, C., Wijffels, R. H. y Eppink, M. H. M. 2020. Selective fractionation of free glucose and starch from microalgae using aqueous two-phase systems. Algal Research, 46, 101801.

The Mathworks, Inc. 1990–2008. Optimization Toolbox™ 4 User’s Guide. Natick, Massachusetts, USA: The Mathworks Inc. 575 p.

Turecek, P. L., Bossard, M. J., Schoetens, F. y Ivens, I. A. 2016. PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs. Journal of Pharmaceutical Sciences, 105, 460–475.

Wingfield, P. T. 2016. Protein Precipitation Using Ammonium Sulfate. Current Protocols in Protein Science, 84, A.3F.1-A.3F.9.

Yadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D. y Surampalli, R. Y. 2015. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33, 756–774.

Yang, Z., Liu, X.-J., Chen, C. y Halling, P. J. 2010. Hofmeister effects on activity and stability of alkaline phosphatase. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1804, 821–828.

Zhang, H., Jiang, B., Feng, Z.-B., Qu, Y.-X., y Li, X. 2016. Separation of α-Lactalbumin and β-Lactoglobulin in Whey Protein Isolate by Aqueous Two-phase System of Polymer/Phosphate. Chinese Journal of Analytical Chemistry, 44(5), 754–759. DOI: 10.1016/S1872-2040(16)60932-5

Descargas

Publicado

2021-10-20

Cómo citar

Valle Guadarrama, S., Domínguez Puerto, R., & Guerra Ramírez, D. (2021). Partición de proteína de lactosuero en un sistema de extracción acuosa en dos fases. Biotecnia, 23(3). https://doi.org/10.18633/biotecnia.v23i3.1263

Número

Sección

Artículos originales

Métrica

Artículos similares

<< < 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.