Efecto del aceite esencial de Chrysactinia mexicana A. Gray sobre aislados clínicos de Candida glabrata

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1265

Palabras clave:

S. cerevisiae, Fungicida, Piperitona, Asteraceae, Microdilución

Resumen

El objetivo del trabajo fue evaluar el efecto del aceite esencial Chrysactinia mexicana A. Gray en aislados clínicos de C. glabrata. Se obtuvo aceite esencial por arrastre de vapor de las flores, hojas y ramas secundarias de C. mexicana. Se realizó cromatografía de gases y espectrometría de masas para conocer la composición del aceite. Se hicieron ensayos de microdilución en fase logarítmica y fase estacionaria con Saccharomyces cerevisiae y aislados clínicos de C. glabrata para determinar la Concentración Mínima Inhibitoria (CMI) en presencia del aceite esencial. Los principales compuestos del aceite esencial fueron la piperitona (29.57 %), eucaliptol (26.86 %), a-terpineol (14.65 %), delta-3-careno (12.37 %) y linalool (3.56 %). Se determinaron las CMI del aceite esencial, para las cinco cepas utilizadas en las dos fases de crecimiento, siendo menor la CMI para S. cerevisiae que para los diferentes aislados clínicos de C. glabrata. El aceite esencial de C. mexicana tiene efecto fungicida en S. cerevisiae y los aislados clínicos de C. glabrata.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Verónica Gallegos-García, Facultad de Enfermería y Nutrición. Universidad Autónoma de San Luis Potosí.

Doctora en Biología Molecular. Instituto Potosino de Ciencia y Tecnología. 

Profesora Investigadora de Tiempo Completo. Facultad de Enfermería y Nutrición. 

Jefa de la Unidad de Posgrado.

Citas

Alanis, A.D., Calzada, F., Cervantes, J.A., Torres, J.A., Torres, J. y Ceballos, G.M. 2005. Antibacterial properties of some plants used in Mexican traditional medicine for the treatment of gastrointestinal disorders. Journal of Ethnopharmacology. 100(1-2): 153-157.

Alnuaimi, A.D., O´Brien-Simpson, N.M., Reynolds, E.C. y McCullough, M.J. 2013. Clinical isolates and laboratory reference Candida species and strains have varing abilities to form biofilms. FEMS Yeast Research. 13(7): 689-699.

Ahmad, K.M., Kokošar, J., Guo, X., Gu, Z., Ishchuk, O.P. y Piškur, J. 2014. Genome structure and dynamics of the yeast pathogen Candida glabrata. FEMS Yeast Research. 14(4): 529-535.

Bakkali, F., Averbeck, S. y Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils–a review. Food and Chemical Toxicology. 46(2): 446-475.

Baker-Brachmann, C., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., et al. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14(2): 115-132.

Brunke, S., Seider, K., Fischer, D., Jacobensen, I.D., Kasper, L., Jablonowski, N., et al. 2014. One small step for a yeast-microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. Plos Pathogens. 10(10): e1004478.

Cárdenas-Ortega, N.C., Zavala-Sánchez, M.A., Aguirre-Rivera, J.R., Pérez-González, C. y Pérez-Gutiérrez, S. 2005. Chemical composition and antifungal activity of essential oil of Chrysactinia mexicana Gray. Journal of Agricultural and Food Chemistry. 53(11): 4347-4349.

Castaño, I.B., Cormack, B. y De Las Peñas, A. 2006. Virulencia del hongo patógeno oportunista Candida glabrata. Revista Latinoamericana de Microbiología. 48(2): 66-69.

Castaño, I.B., Cuéllar-Cruz, M. y De Las Peñas, A. 2015. Método in vitro para la detección de de Candida glabrata, kit de diagnóstico y uso de los mismos. México. EP2410052B1.

Cuéllar-Cruz, M., Briones-Martin-del-Campo, M., Cañas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L., Castaño, I., et al. 2008. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryotic Cell. 7(5): 814-825.

da Silva, A., Lee, K.K., Raziunaite, I., Schaefer, K., Wagener, J., Yadav, B., et al. 2016. Cell biology of Candida albicans–host interactions. Current Opinion in Microbiology. 34: 111-118.

Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S. y Lafontaine, I. 2004. Genome evolution in yeasts. Nature. 430: 35-44.

Eggimann, P., Garbino, J. y Pittet, D. 2003. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. The Lancet Infectious Diseases. 3(11): 685-702.

Franzot, S.P., Mukherjee, J., Cherniak, R., Chen, L.C., Hamdan, J.S. y Casadevall, A. 1998. Microevolution of a estándar strain of Cryptococcus neoformans resulting in differences in virulence and other phenotypes. Infection and Immunity. 66(1): 89-97.

Freisleben, S.H. y Jäger, A.K. 2014. Correlation between plant secondary metabolites and their antifungal mechanisms-a review. Medicinal and Aromatic Plants. 3(2): 1-6.

García-López, J.C., Álvarez-Fuentes, G., Pinos-Rodríguez, J.M., Jasso-Pineda, Y., Contreras-Treviño, H. I., Camacho- Escobar, M. A. et al. 2017. Anti-inflammatory Effects of Chrysactinia mexicana Gray Extract in Growing Chicks (Gallus gallusdomesticus) Challenged with LPS and PHA. International Journal of Current Microbiology and Applied Sciences. 6(1): 550-562.

Guinea, J. 2014. Global trends in the distribution of Candida species causing candidemia. Clinical Microbiology and Infection. 20: 5-10.

Hoehamer, C.F., Cummings, E.D., Hilliard, G.M. y Rogers, P.D. 2010. Changes in the proteome of Candida albicans in response to azole, polyene, and echinocandin antifungal agents. Antimicrobial Agents and Chemotherapy. 54(5): 1655-1664.

Hoet, S., Stevigny, C., Hérent, M.F. y Quetin-Leclercq, J. 2006. Antitrypanosomal compounds from the leaf essential oil of Strychnos spinosa. Planta Medica. 72(5): 480-482.

Horn, D.L., Neofytos, D., Anaissie, E.J., Fishman, J.A., Steinbach, W.J., Olyaei, A.J., et al. 2009. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clinical Infectious Diseases. 48(12): 1695-1703.

Hyldgaard, M., Mygind, T. y Meyer, R.L. 2012. Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology. 3: 12.

Ipek, E., Zeytinoglu, H., Okay, S., Tuylu, B.A., Kurkcuoglu, M. y Baser, K.H.C. 2005. Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/ microsomal test. Food Chemistry. 93(3): 551-556.

Jakubowski, W., Biliński, T. y Bartosz, G. 2000. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radical Biology and Medicine. 28(5): 659-664.

Jiang, C., Dong, D., Yu, B., Cai, G., Wang, X., Ji, Y., et al. 2013. Mechanisms of azole resistance in 52 clinical isolates of Candida tropicalis in China. Journal of Antimicrobial Chemotherapy. 68(4): 778-785.

Köler, J.R., Casadevall, A. y Perfect, J. 2015. The spectrum of fungi that infects humans. Cold Spring Harbor Perspectives in Medicine. 5(1): a019273.

López-Fuentes, E., Gutiérrez-Escobedo, G., Timmermans, B., Van Dijck, P., De Las Peñas, A. y Castaño, I. 2018. Candida glabrata’s genome plasticity confers a unique pattern of expressed cell wall proteins. Journal of Fungi. 4(2): 67.

Magalhães, Y.C., Bomfim, M.R.Q., Melônio, L.C., Ribeiro, P., Cosme, L.M., Rhoden, C.R., et al. 2015. Clinical significance of the isolation of Candida species from hospitalized patients. Brazilian Journal of Microbiology. 46(1): 117-123.

Mahilrajan, S., Nandakumar, J., Kailayalingam, R., Manoharan, N.A. y SriVijeindran, S. 2014. Screening the antifungal activity of essential oils against decay fungi from palmyrah leaf handicrafts. Biological Research. 47(1): 35.

Moran, C., Grussemeyer, C.A., Spalding, J.R., Benjamin, D.K. y Reed, S.D. 2010. Comparison of costs, length of stay, and mortality associated with Candida glabrata and Candida albicans bloodstream infections. American Journal of Infection Control. 38(1): 78-80.

Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R. y De Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6(12): 1451-1474.

Orkwis, B.R., Davies, D.L., Kerwin, C.L., Sanglard, D. y Wykoff, D.D. 2010. Novel acid phosphatase in Candida glabrata suggests selective pressure and niche specialization in the phosphate signal transduction pathway. Genetics. 186(3): 885-895.

Pineda-Díaz, J., Gómez-Meraz, Y., Xoconostle-Cázares, B. y García- Mena, J. 2017. Detección de Candida glabrata en mujeres mexicanas sanas y con candidiasis vulvovaginal recurrente. Ginecología y Obstetricia de México. 85(2): 71-79.

Poláková, S., Blume, C., Zárate, J.A., Mentel, M., Jørck-Ramberg, D., Stenderup, J., et al. 2009. Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proceedings of the National Academy of Sciences. 106(8): 2688-2693.

Roche, C.M., Blanch, H.W., Clark, D.S. y Glass, N.L. 2013. Physiological role of acyl coenzyme A synthetase homologs in lipid metabolism in Neurospora crassa. Eukaryotic Cell. 12(9): 1244-1257.

Santana-Rios, G., Orner, G.A., Amantana, A., Provost, C., Wu, S.-Y. y Dashwood, R.H. 2001. Potent antimutagenic activity of white tea in comparison with green tea in the Salmonella assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 495(1): 61-74.

Santos, S.B.D., Sabadin, C.E.S., Mario, D.N., Rigo, L. y Barbosa, D.A. 2018. Presence of Candida spp. and candidiasis in liver transplant patients. Anais Brasileiros de Dermatologia. 93(3): 356-361.

Secretaria de Salud. 2015. Informe Anual 2015: Red Hospitalaria de Vigilancia Epidemiológica. Recuperado de https://www. gob.mx/cms/uploads/attachment/file/212974/infoanual_ rhove_2015.pdf México. (Accesado 04/06/2020).

Selmecki, A., Forche, A. y Berman, J. 2010. Genomic plasticity of the human fungal pathogen Candida albicans. Eukaryotic Cell. 9(7): 991-1008.

Underhill, D.M. y Iliev, I.D. 2014. The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology. 14(6): 405-416.

Zore, G.B., Thakre, A.D., Jadhav, S. y Karuppayil, S. M. 2011. Terpenoids inhibit Candida albicans growth by affecting membrane integrity and arrest of cell cycle. Phytomedicine. 18(13): 1181-1190.

Descargas

Publicado

2021-01-21

Cómo citar

Gallegos-García, V., Medina-de la Cruz, O., Leal-Morales, C. A., Meza-Menchaca, T., Guillen, L., & Juárez-Flores, B. I. (2021). Efecto del aceite esencial de Chrysactinia mexicana A. Gray sobre aislados clínicos de Candida glabrata. Biotecnia, 23(1), 28–35. https://doi.org/10.18633/biotecnia.v23i1.1265

Número

Sección

Artículos originales

Métrica

Artículos similares

<< < 1 2 3 4 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.