Uso de hidrólisis previa a la modificación química y termomecánica de almidón de arroz: alternativa a las modificaciones tradicionales

Autores/as

  • Nancy P. Grajeda-Nieto Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Mayra Márquez Gómez Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Tomás Galicia-García Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Iván Estrada-Moreno Centro de Invrstigación en Materiales Avanzados. CIMAV Chihuahua.
  • Mónica E. Mendoza-Duarte Centro de Investigación en Materiales Avanzados. CIMAV Chihuahua.
  • Rubén Márquez-Meléndez Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Martha G. Ruiz-Gutiérrez Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Armando Quintero-Ramos grajeda.nancy@gmail.com Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Beatriz Portillo- Arroyo Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.
  • Cesar Soto-Figueroa Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

DOI:

https://doi.org/10.18633/biotecnia.v23i1.1296

Palabras clave:

Almidón modificado, Almidón nativo, Acetilación, Extrusión, Hidrólisis

Resumen

Almidón de arroz aislado (AN), fue sometido a modificación química y termomecánica con hidrólisis previa (AMH) y sin hidrólisis previa (AM), para ser caracterizado en grado de sustitución (GS), color, índice de absorción y solubilidad en agua (IAA e ISA), así como sus propiedades reológicas (viscosidad, textura), térmicas (Calorimetría diferencial de barrido - DSC) y estructurales (Infrarrojo- IR, rayos X-Rx e índice de cristalinidad relativa-ICR). El GS obtenido en ambos almidones se encontró dentro del rango permitido por la FDA haciéndolo apto para el consumo humano. La modificación mostró un incremento en IAA e ISA, obteniéndose el mayor valor de IAA en el AM (4.80) y de ISA en el AMH (32.06). La viscosidad presentó una disminución significativa (P<0.05) en ambos almidones (AMH 0.013 y AM 5.613), obteniéndose geles con mayor estabilidad. Así mismo, la dureza de los geles de almidón decreció (60 %) mientras que la adhesividad disminuyó únicamente en AM (66 %). El ICR de los almidones modificados aumentó con respecto al almidón nativo, lo que indica una despolimerización de la molécula producto de la modificación. La presencia del grupo acetilo en la molécula de almidón se observó en las señales entre 1650-1744 cm-1, confirmando la esterificación. Los almidones evaluados presentan un alto potencial para su uso como recubrimientos comestibles y como materiales de pared para microencapsulación.

Biografía del autor/a

Nancy P. Grajeda-Nieto, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

La M.C Nancy P. Grajeda Nieto es gresada del Programa de Maesría en Ciencia y Tecnología de Alimentos de la Unversidad Autónoma de Chihuahua

Mayra Márquez Gómez, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

La M.C Mayra Márquez Gómez es egresada del Programa de Maesría en Ciencia y Tecnología de Alimentos de la Unversidad Autónoma de Chihuahua

Tomás Galicia-García, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

El Dr Galicia García es profesor investigador en el área de Ciencia y Tecnología de Alimentos de la Universidad Autónoma de Chihuahua. Actualmente forma parte del Sistema Nacional de Investigadores (SNI).

Iván Estrada-Moreno, Centro de Invrstigación en Materiales Avanzados. CIMAV Chihuahua.

El Dr Estrada Moreno participa en el laboratorio de Polimeros del CIMAV. Actualmente  es investigador Nacional (SNI) 

Mónica E. Mendoza-Duarte, Centro de Investigación en Materiales Avanzados. CIMAV Chihuahua.

La M.C Mendoza Duarte participa en el laboratorio de reologia en CIMAV

Rubén Márquez-Meléndez, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

  1. El Dr. Márquez Meléndez es profesor Investigador en el área de Ciencia y Tecnologia de Alimentos en la Universidad Autónoma de Chihuahua.

Martha G. Ruiz-Gutiérrez, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

La Dra. Ruiz Gutiérrez es profesor investigador en Ciencis y Tecnología de Alimentos en la Universidad Autónoma de Chihuahua. Actualmente forma parte del Sistema Nacional de Investigadores (SNI)

Armando Quintero-Ramos, grajeda.nancy@gmail.com Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

El Dr Quintero Ramos es profesor investigador en Ciencia y Tecnología de Alimentos en la Univetsidad Autónoma de Chihuahua. Actualme8mte forma parte del Sistema Nacional de Investigadores (SNI).

Beatriz Portillo- Arroyo, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

La M.C Portillo Arroyo es profesora investigadora en el Area de la Salud de la Universidad Autónoma Chihuahua.

Cesar Soto-Figueroa, Facultad de Ciencias Químicas. Programa de Ciencia y Tecnología en Alimentos. Universidad Autónoma de Chihuahua.

El Dr Soto Figueroa es profesor investigador del area de Química en la Universidad Autónoma de Chihuahua. Actualmente forma parte del Sistema Nacional de Investigadores.

Citas

Aguilar-Palazuelos, E., Martínez-Bustos, F., Jiménez-Arévalo, O. A., Galicia-García, T., and Delgado-Rangel, J. A. 2007. Potentiality of some natural fibres and native starch for making biodegradable materials in: Food engineering research developments, (T.P. Klening, ed), pp 279-294. Nova Science Publishers, New York.
Amagliani, L., O’Regan, J., Kelly, A. L., and O’Mahony, J. A. 2016. Chemistry, structure, functionality and applications of rice starch. Journal of Cereal Science 70, 291-300.
Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., González-Núñez, R., and Grosso, C. R. F. 2012. Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: A preliminary study. Journal of Food Engineering 113, 33-40.
Bello-Pérez, L. A., Agama-Acevedo, E., Zamudio-Flores, P. B., Mendez-Montealvo, G., & Rodriguez-Ambriz, S. L. 2010. Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT - Food Science and Technology 43, 1434-1440.
Bello-Pérez, L. A., and Paredes-López, O. 2009. Starches of some food crops, changes during processing and their nutraceutical potential. Food Engineering Reviews 1, 50-65.
Bello Pérez, L. A., González Soto, R. A., Sánchez Rivero, M. M., Gutiérrez Meraz, F., and Vargas Torres, A. 2006. Extrusión de almidones de fuentes no convencionales para la producción de almidón resistente. Agrociencia 40, 441-448.
Burros, B. C., Young, L. A., and Carroad, P. A. 1987. Kinetics of Corn Meal Gelatinization at High Temperature and Low Moisture. Journal of Food Science 52, 1372-1376.
Casas-Alencáster, B. N., and Pardo-García, D. G. 2005. Análisis de perfil de textura y propiedades de relajación de geles de mezclas almidón de maíz ceroso entrecruzado-gelana. Revista Mexicana de Ingeniería Química 4, 107-121.
Colussi, R., El Halal, S. L. M., Pinto, V. Z., Bartz, J., Gutkoski, L. C., da Rosa Zavareze, E., and Dias, A. R. G. 2015. Acetylation of rice starch in an aqueous medium for use in food. LWT - Food Science and Technology 62, 1076-1082.
Copeland, L., Blazek, J., Salman, H., and Tang, M. C. 2009. Form and functionality of starch. Food Hydrocolloids 23, 1527-1534.
Chel-Guerrero, L., Pérez-Flores, V., Betancur-Ancona, D., and Dávila-Ortiz, G. 2012. Functional Properties of Flours and Protein Isolates from Phaseolus lunatus and Canavalia ensiformis Seeds. Journal of Agricultural and Food Chemistry 50, 584-591.
Chen, H., Siebenmorgen, T. J., and Griffin, K. 1998. Quality characteristics of long-grain rice milled in two commercial systems. Cereal Chemistry 75, 560-565.
Chinachotic, P., and Varavinita, S. 2001. A study of some physicochemical properties of high-crystalline tapioca starch. Starch/Stärke 53, 577-581.
Chinnaswamy, R., and Hanna, M. A. 1988. Relationship between amylose content and extrusion-expansion properties of com starches. Cereal Chemistry, 65, e147.
Dias, A. B., Müller, C. M. O., Larotonda, F. D. S., and Laurindo, J. B. 2010. Biodegradable films based on rice starch and rice flour. Journal of Cereal Science, 51, 213-219.
dos Santos, A. B., Fávaro-Trindade, C. S., and Grosso, C. R. F. 2005. Preparo e caracterização de microcápsulas de oleorresina de páprica obtidas por atomização. Ciência e Tecnologia de Alimentos 25, 322-326.
Eliasson, A.C. 2004. Starch in food: Structure, function and applications: Woodhead Publising. USA.
Enríquez C, M., Velasco M, R., and Fernández Q, A. 2013. Caracterización de almidones de Yuca nativos y modificados para la elaboración de empaques biodegradables. Biotecnología en el Sector Agropecuario y Agroindustrial 11, 21-30.
González-Soto, R. A., de la Vega, B., García-Suarez, F. J., Agama-Acevedo, E., and Bello-Pérez, L. A. 2011. Preparation of spherical aggregates of taro starch granules. LWT-Food Science and Technology 44, 2064-2069.
Gulati, P., Weier, S. A., Santra, D., Subbiah, J., and Rose, D. J. 2016. Effects of feed moisture and extruder screw speed and temperature on physical characteristics and antioxidant activity of extruded proso millet (Panicum miliaceum) flour. International Journal of Food Science & Technology 51, 114-122.
Gujska, E., and Khan, K. 1990. Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. Journal of Food Science 55(2), 466-469.
Gunaratne, A., and Hoover, R. 2002. Effect of heat–moisture treatment on the structure and physicochemical properties of tuber and root starches. Carbohydrate Polymers 49, 425-437.
Hagenimana, A., Ding, X., and Fang, T. 2006. Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science 43, 38-46.
Harper, J. M., Tribelhorn, R. E. 1992. Expansion of native cereal starch extrudates. In: Food Extrusion Science and Technology, (J.L. Kokini., C.T. Ho y M.V. Karwe, eds.), pp. 653-667. Marcel Dekker Inc, New York.
Hleap, J. I., and Velasco, V. A. 2010. Análisis de las propiedades de textura durante el almacenamiento de salchichas elaboradas a partir de tilapia roja (Oreochromis sp.). Biotecnología en el Sector Agropecuario y Agroindustrial 8, 46-56.
Jin, Z., Hsieh, F., & Huff, H. E. 1994. Extrusion cooking of corn meal with soy fiber, salt, and sugar. Cereal Chemistry 71, 227-233.
Lawal, O. S. 2004. Composition, physicochemical properties and retrogradation characteristics of native, oxidised, acetylated and acid-thinned new cocoyam (Xanthosoma sagittifolium) starch. Food Chemistry 87, 205-218.
Liu, H., Xie, F., Yu, L., Chen, L., and Li, L. 2009. Thermal processing of starch-based polymers. Progress in Polymer Science 34, 1348-1368.
López Hernández, O. D. 2010. Microencapsulación de sustancias oleosas mediante secado por aspersión. Revista Cubana de Farmacia 44, 381-389.
López, O. V., Zaritzky, N. E., and García, M. A. 2010. Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. Journal of Food Engineering 100, 160-168.
Mali, S., Sakanaka, L. S., Yamashita, F., and Grossmann, M. V. E. 2005. Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydrate Polymers 60, 283-289.
Mano, J. F., Koniarova, D., and Reis, R. L. 2003. Thermal properties of thermoplastic starch/synthetic polymer blends with potential biomedical applicability. Journal of Materials Science: Materials in Medicine 14, 127-135.
Martin, C., Smith, A. M. 1995. Starch biosynthesis. The plan cell, 7, 971.
McPherson, A. E., and Jane, J. 1999. Comparison of waxy potato with other root and tuber starches. Carbohydrate Polymers 40, 57-70.
Moorthy, S. N. 2002. Physicochemical and functional properties of tropical tuber starches: a review. Starch‐Stärke 54, 559-592.
Morales Martínez, L. E. 2014. Morfometría de los granos de arroz (Oryza sativa L.) y caracterización fisicoquímica, estructural y reológica de las harinas integrales de las variedades MorelosA-92 y Koshihikari y de seis líneas provenientes de estas. Tesis de Maestría en Ciencias en Desarrollo de Productos Bióticos. Instituto Politécnico Nacional, México.
Murúa-Pagola, B., Beristain-Guevara, C. I., and Martínez-Bustos, F. 2007. Application of phosphorylated waxy maize starch in the microencapsulation of flavors: characterization and stability. In: Journal of Food Engineering Research Developments, (T.P. Klening ed.), Pp. 979-971. Nova Science Publishers, New York.
Murúa-Pagola, B., Beristain-Guevara, C. I., and Martínez-Bustos, F. 2009. Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying. Journal of Food Engineering 91, 380-386.
Phillips, D. L., Liu, H., Pan, D., and Corke, H. 1999. General application of raman spectroscopy for the determination of level of acetylation in modified starches. Cereal Chemistry 76, 439-443.
Prieto-Méndez, J., Trejo-Cárdenas, C. L., Prieto-García, F., Méndez-Marzo, M. A., Bello-Pérez, L. A., and Román-Gutiérrez, A. D. 2010. Acetilación y caracterización del almidón de cebada. Revista Latinoamericana de Recursos Naturales 6, 32-43.
Puncha-arnon, S., and Uttapap, D. 2013. Rice starch vs. rice flour: Differences in their properties when modified by heat–moisture treatment. Carbohydrate Polymers 91, 85-91.
Rabek, J. F. 1980. Applications of wide-angle X-ray diffraction (WAXD) to the study of the structure of polymers. In: Experimental methods in polymer chemistry (H.F. Mark, ed.) pp. 123-140. Wiley-Interscience, New York.
Rendón-Villalobos, R., García-Hernández, E., Güizado-Rodríguez, M., Salgado-Delgado, R., and Rangel-Vázquez, N. A. 2010. Obtención y caracterización de almidón de plátano (Musa paradisiaca L.) acetilado a diferentes grados de sustitución. Afinidad, 67, 548.
Rivas-González, M., Zamudio-Flores, P. B., and Bello-Pérez, L. A. 2009. Efecto del grado de acetilación en las características morfológicas y fisicoquímicas del almidón de plátano. Revista Mexicana de Ingeniería Química 8, 291-297.
Santos, B. D., Fávaro-Trindade, A., Grosso, C. S. F. & Raimundo, C. 2005. Preparo e Caracterização de Microcápsulas de Oleoresina de Páprica Obtidas por Atomização. Ciência e Tecnologia de Alimentos, 25, 322-326
Sebio, L. (2003). Desenvolvimento de plástico biodegradável a base de amido de milho e gelatina pelo processo de extrusão: avaliação das propriedades mecânicas, térmicas e de barreira.
Sha, X. S., Xiang, Z. J., Bin, L., Jing, L., Bin, Z., Jiao, Y. J. & Kun, S. R. 2012. Preparation and physical characteristics of resistant starch (type 4) in acetylated indica rice. Food Chemistry 134, 149–154.
Singh, J., Kaur, L., and McCarthy, J. 2007. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications-a review. Food Hydrocolloids, 21:1-22.
Sothornvit, R., and Krochta, J.M. 2005. Plasticizer in edible films and coatings, in Innovations. In J.H. Han (ed), Innovations in foods packings.403-428. Amsterdan. The Netherlands: Elservier.
Tari, T. A., & Singhal, R. S. (2002). Starch-Based Spherical Aggregates: Stability Of A Model Flavouring Compound, Vanillin Entrapped.
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch—Composition, Fine structure And Architecture. Journal Of Cereal Science, 39(2), 151-165
Thymi, S., Krokida, M. K., Pappa, A., & Maroulis, Z. B. (2005). Structural Properties Of Extruded Corn Starch. Journal Of Food Engineering, 68(4), 519-526
Thomas, T. D. J., & Atwell, W. A. (1999). Starches. Eagan Press Handbook
Vaclavik, V. A., and Christian, E. W. 2002. Fundamentos de Ciencia de los Alimentos: Editorial Acribia, México.
Von Atzingen, M. C., & Machado Pinto and Silva, M. E. 2005. Evaluación de la Textura y Color de Almidones y Harinas en preparaciones sin Gluten. CyTA-Journal of Food 4, 319-323.
Wang, Y.J., Wang, L., Shephard, D., Wang, F., and Patindoll, J. 2002. Properties and structures of flours and starches from whole, broken, and yellowed rice kernels in a model study. Cereal Chemistry 79, 383.
Xie, S. X., Liu, Q., and Cui, S. W. 2005. Starch modification and applications: CRC Press, USA.
Xu, Y., Miladinov, V., and Hanna, M. A. 2004. Synthesis and characterization of starch acetates with high substitution 1. Cereal Chemistry 81, 735-740.
Zavareze, E. D. R., and Dias, A. R. G. 2011. Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317-328.
Zazueta-Morales, J. J. 2003. Extrusión de maíz (Zea mays L.) azul: efecto del hidróxido de calcio sobre las propiedades fisicoquímicas y funcionales. Tesis de Doctorado. Universidad Autónoma de Querétaro.

Descargas

Publicado

2021-02-19

Número

Sección

Artículos