Caracterización química y nutrimental de variedades de maíz (Zea mays L.) de alta calidad de proteína desarrolladas en Yucatán, México

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i2.1334

Palabras clave:

Maíz, híbridos, QPM, valor nutrimental, calidad de proteína, minerales

Resumen

La desnutrición es un problema que afecta a las comunidades rurales. El maíz es alimento básico cuya ingesta es esencial para el crecimiento y desarrollo de los infantes. La calidad proteínica del maíz es pobre debido a la deficiencia de aminoácidos como lisina y triptófano, por lo cual, se desarrollaron maíces de calidad de proteína (denominados QPM). Se realizó la caracterización química y nutrimental de los granos de maíz híbrido Sac Béh y Chichén Itzá, determinando la composición químico proximal, los minerales Ca, Fe, K, Mg, Na y P; el perfil de ácidos grasos y de aminoácidos. Se evaluó la calidad de la proteína mediante la digestibilidad “in vitro” y cómputo químico, aminoácido limitante, la puntuación de aminoácidos corregido con digestibilidad de proteínas (PDCAAS), la relación de eficiencia de proteína calculada (c-PER) y el valor biológico (VB). Se demostró un aumento de proteínas y alto contenido de aceite con 7% de lípidos. Se encontró un mayor contenido de ácidos grasos monoinsaturados (MUFA) que saturados (SFA) y se mantuvo el contenido mineral. La calidad de la proteína fue superior con respecto a los predecesores, con mayores niveles de lisina, triptófano, fenilalanina e isoleucina, mayor digestibilidad y el doble de valor biológico.

Citas

1. Aguilar-Castillo, G., Gómex-Montiel, N., Torres-Pimentel, H. y Vázquez-Carrillo. G. 2010. Sac-Beh y Chichen Itzá: variedades de maíz de calidad proteínica para el sistema RozaTumba-Quema de la península de Yucatán. Instituto Nacional de investigaciones Forestales y Pecuarias. Centro de Investigación regional del sureste. Campo Experimental Mocochá. Folleto técnico 3: 5-8
2. Akalu, G., Taffesse, S., Gunaratna, N.S. y De Groote, H. 2010. The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food and Nutrition Bulletin. 31: 418-430
3. Alaíz, M., Navarro, J. L., Girón, J. y Vioque E. 1992. Amino acid analysis by high-performance liquid chromatography after derivatization with diethyl ethoxymethylenemalonate. Journal of Chromatography. 591: 181-186
4. AOAC. 2012. Oficial methods of analysis of AOAC International., editor Latimer G.W., 19th. Edition, USA.
5. Bódi, Z., Pepó, P., Kovács, A., Széles, E. y Györi, Z. 2008. Macro- and microelement contents of blue and red kernel corns, Cereal Research Communications. 36: 147–155.
6. Cázares, E., Chávez, J. L., Salinas, Y., Casillo, F. y Ramírez, P. 2015. Variación en la composición del grano entre poblaciones de maíz (Zea mays L.) nativas de Yucatán, México. Agrociencia. 49: 15-30.
7. Cuevas, E.O., Verdugo, N.M., Ângulo, P.I., Milán, J., Mora, R., Bello, L. A., Garzón, J.A. y Reyes, C. 2006. Nutritional properties of tempeh flour from quality protein maize (Zea mays L.). LWT Food Science and Technology. 39: 1072-1079.
8. FAO Y FINUT. 2017. Organización de la Naciones Unidas para la Alimentación y la Agricultura (FAO) y la Fundación Iberoamericana de Nutrición (FINUT) Granada, España, 2017 Evaluación de la calidad de las proteínas de la dieta en nutrición humana Consulta de expertos. 31 de Marzo-2 de Abril, 2011 Auckland, Nueva Zelanda. FAO ISSN 1014-2916 ISBN 978-84-697-74731.
9. FAO. 2013. Dietary protein quality evaluation in human nutrition: Report of an FAO Expert Consultation. pp. 3-12,27, 33-35.
10. Friedman, M. 1996. Nutritional Value of Proteins from Different Food Sources. Journal Agriculture and Food Chemistry. 44: 6-29.
11. Gayral, M., Gaillard, C., Bakan, B., Dalgalarrondo, M., Elmorjani, K., Delluc, C., Brunet, S., Linossier, L., Morel, M.H. y Marion, D. 2016. Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. Journal of Cereal Science, 68:148-154.
12. Gutiérrez, R., Ayala, A. E., Milán, J., Garzón, J. A., López, J.A. y Reyes C. 2008. Technological and nutritional properties of flours and tortillas from nixtamalized and extruded quality protein maize (Zea mays L.). Cereal Chemistry. 85: 808-816.
13. Gutiérrez, M.L., Coronado, E., Vázquez, F. A., López, Y. L. y Ortega, A. 2009. Caracterización física y química de maíz de calidad proteínica mejorada, Physical and chemical characterization of quality protein maize. CyTA – Journal of Food. 7: 111-118.
14. Gwirtz, J.A. y García M.N. 2014. Processing maize flour and corn meal food products, Annals of the New York Academy of Sciences. 1312: 66–75
15. Hasjim, J., Srichuwong, S., Scott, M.P. y Jane J.L. 2009. Kernel composition, starch structure, and enzyme digestibility of opaque-2 maize and quality protein maize, Journal of Agricultural and Food Chemistry. 57: 2049-2055.
16. Hsu, H.W., Vavar, D.L., Satterlee, L.D. y Miller, G.A. 1977. A multienzyme technique for estimating protein digestibility., Journal of food science. 42: 1269-1273.
17. Ignjatovic, D., Vancetovic, J., Trbovic, D., Dumanovic, Z., Kostadinovic, M. y Bozinovic, S. 2015. Grain nutrient composition of maize (Zea mays L.) drought-tolerant populations, Journal of Agricultural and Food Chemistry. 63: 1251−1260.
18. Kriz, A. L. 2009. Enhancement of amino acid availability in corn grain. En: Molecular genetic approaches to maize improvement. Biotechnology in agriculture and forestry. Kriz A.L., Larkins B.A. (eds), pp. 79-89, Springer, Berlin.
19. Lee, Y.B., Elliot, J.G., Rickansrud, D. A. y Hagberg E.C. 1978. Predicting protein efficiency ratio by the chemical determination of connective tissue content in meat. Journal of Food Science. 43: 1359-1362.
20. Li, J.S. y Vassal, S. K. 2016. Maize: Quality protein maize. En: Encyclopedia of Food Grains (Second Edition), Vol. 4, pp. 420-424., Elsevier, China.
21. Martínez, M., Ortiz, R. y Raigón, M.D. 2017. Contenido de fósforo, potasio, zinc, hierro, sodio, calcio y magnesio, análisis de su variabilidad en accesiones cubanas de maíz, Cultivos Tropicales. 38: 92-101.
22. Mendoza, M., Andrio, E., Juárez, J. M., Mosqueda, C., Latournerie, L., Castañón, G., López, A. y Moreno, E. 2006. Contenido de lisina y triptófano en genotipos de maíz de alta Calidad proteica y normal. Universidad y Ciencia. 22: 153-161.
23. Menkir, A. (2008). Genetic variation for grain mineral content in tropical-adapted maize inbred lines, Food Chemistry. 110: 454–464.
24. Mohammad, S., Dikshit, N., Sekhar, C., Kumar, P. y Kumar S. 2018. Biochemical evaluation of dent corn (Zea mays L.) genotypes cultivated under rainfed conditions in the hills of north western Indian Himalayan state of Jammu and Kashmir. Journal of Applied and Natural Science. 10: 196-201.
25. Montgomery, D.C. 2008. Diseño y análisis de experimentos. 2a ed., pp. 100-102, editorial Limusa -Wiley, México.
26. Morup, I. K. y Olesen, E. S. 1976. New method for prediction of protein value from essential amino acid pattern. Nutritional Report International. 13: 355–365.
27. Norma Mexicana NMX-FF-034/1-SCFI-2002. Productos alimenticios no industrializados para consumo humano - Cereales – Parte I: Maíz blanco para proceso alcalino para tortillas de maíz y productos de maíz nixtamalizado- Especificaciones y métodos de prueba.
28. Preciado, R.E., Vázquez, M.G., Figueroa, J.D., Guzmán, S.H., Santiago, D. y Topete A. 2018. Fatty acids and starch properties of high-oil maize hybrids during nixtamalization and tortilla-making process, Journal of Cereal Science. 83: 171-179.
29. Salazar, L. L. y Magaña, M. Á. 2016. Aportación de la milpa y traspatio a la autosuficiencia alimentaria en comunidades mayas de Yucatán; Estudios sociales. 24-25: 182-203.
30. Sanjeev, P., Chaudhary, D. P., Sreevastava, P., Saha, S., Rajenderan, A., Sekhar J. C. y Chikkappa, G. K. 2014. Comparison of Fatty Acid Profile of Specialty Maize to Normal Maize, Journal of the American Oil Chemists' Society. 91: 1001-1005.
31. Schaarfsma, G. 2005. The Protein Digestibility-Corrected Amino Acid Score (PDCAAS)-AConcept for describing protein quality in foods and food ingredients: A critical review. Journal of AOAC International. 88: 988-994.
32. Shewry, P.R. 2007. Improving the protein content and composition of cereal grain. Journal of Cereal Science. 46: 239-250.
33. Singh, N., Vasudev, S., Yadava, D.K., Chaudhary, D.P. y Prabhu, K.V. 2013. Oil improvement in maize: Potential and prospects. En: Maize: Nutrition Dynamics and Novel Uses. Chaudhary D., Kumar S., Langyan S. (eds), p. 79, Springer, New Delhi.
34. Tang, M., He, X., Luo, Y., Ma, L., Tang, X. y Huang, K. 2013. Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize. Journal of the Science of Food and Agriculture. 13: 1049-1054.
35. Tiwari, M.R., Chapagain, B.P., Shah, M.K. y Shrestha, Y.K. 2013. Evaluation of quality protein maize for growth performance of crossbred piglets in western hills of nepal. Global Journal of Science Frontier Research Agriculture and Veterinary. 13: 1-6.
36. Upadyay, S.R., Gurug, D. B., Paudel, D. C., Koirala, K. B., Sah, S. N., Prasad, R. C., Pokhrel, B. B. y Dhakal, R. 2009. Evaluation of quality protein maize (QPM) genotypes under rainfed mid hill environments of nepal. Nepal Journal of Science and Technology 10: 9-14
37. Val, L.D., Schwartz, S.H., Kerns, M.R. y Deikman, J. 2009. Development of a high oil trait for maize. En: Molecular genetic approaches to maize improvement. biotechnology in agriculture and forestry, Kriz A.L., Larkins B.A. (eds), Vol. 63, p. 603, Springer, Berlin.
38. Yust, M., Pedroche, J., Girón, J., Vioque, E., Millán, F. y Alaíz, M. 2004. Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection, Food Chemistry. 85: 317–320.
39. Zengin, G., Aktumsek, A., Guler ,G. O., Cakmak, Y. S., Girón, J., Alaíz, M. y Vioque, J. 2012. Nutritional quality of protein in the leaves of eleven Asphodeline species (Liliaceae) from Turkey. Food Chemistry. 135: 1360-1364.

Descargas

Publicado

2021-06-08

Número

Sección

Artículos