Efecto de la inclusión de inulina (prebiótico) y Bacillus subtilis y Lactobacillus sp. (probiótico) en el alimento, sobre la microbiota intestinal del camarón blanco Litopenaeus vannamei




Palabras clave:

Alimento funcional, Camarón, Modulación bacteriana


Juveniles de Litopenaeus vannamei (1.05 ± 0.1 g) fueron alimentados durante cuatro semanas con cuatro dietas experimentales: control (Ctrl), inulina como prebiótico (5 g kg-1) (Pre), Bacillus subtilis y Lactobacillus sp. como probiótico (1 x 105 UFC g-1) (Pro), y una mezcla de inulina + B. subtilis y Lactobacillus sp. (5 g kg-1 + 1 x 105 UFC g-1) (Syn). Los camarones con la dieta Syn resultaron en un crecimiento significativamente mayor y una mejor eficiencia de utilización del alimento que los camarones control (P < 0.05). El probiótico empleado indujo una mayor riqueza bacteriana intestinal, mientras que la inulina resultó en una mayor diversidad bacteriana en el intestino del camarón. A nivel de filo, Proteobacteria fue el más dominante en todos los tratamientos, entre 80 y el 84 %. La dieta Pre aumentó la abundancia relativa de Firmicutes en el camarón (2 %) en comparación con el resto de los tratamientos (0.6 %). El uso del probiótico (Pro y Syn), resultó en una reducción de entre 3 y 13 % en la abundancia relativa de Vibrio sp. en intestino de camarón respecto al tratamiento control, que representa una ventaja para el control de potenciales patógenos de este género.


Alagappan, K.M., Deivasigamani, B., Somasundaram, S.T., Kumaran, S. 2010. Occurrence of Vibrio parahaemolyticus and its specific phages from shrimp ponds in east coast of India. Current microbiology, 61, 235-240.

AOAC. 2005. Official methods of analysis of the association of analytical chemists international, 18th ed. Gathersburg, MD, U.S.A.

Balcázar, J.L., Rojas-Luna, T. 2007. Inhibitory activity of probiotic Bacillus subtilis UTM 126 against Vibrio species confers protection against vibriosis in juvenile shrimp (Litopenaeus vannamei). Current Microbiology, 55, 409–412.

Boonanuntanasarn S., Wongsasak, U., Pitaksong, T., Chaijamrus, S. 2016. Effects of dietary supplementation with β-glucan and synbiotics on growth, haemolymph chemistry, and intestinal microbiota and morphology in the Pacific white shrimp. Aquaculture Nutrition, 22, 837–845.

Cottrell, M., Kirchman, D. 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnology and Oceanography, 48, 168–178.

Dai, W., Yu, W., Xuan, L., Tao, Z., Xiong, J. 2018. Integrating molecular and ecological approaches to identify potential polymicrobial pathogens over a shrimp disease progression. Applied Microbiology and Biotechnology, 102, 3755–3764.

Ebeling, M.E. 1968. The Dumas method for nitrogen in feeds. Journal of the Association of Official Analytical Chemists, 51, 766–770.

Elizondo-González, R., Quiroz-Guzmán, E., Escobedo-Fregoso, C., Magallón-Servín, P., & Peña-Rodríguez, A. (2018). Use of seaweed Ulva lactuca for water bioremediation and as feed additive for white shrimp Litopenaeus vannamei. PeerJ, 6, e4459.

García-Rodríguez, R. 2003. Relevancia de las bacterias ácido lácticas en los diferentes estadios del cultivo del camarón. Bachelor dissertation. UABCS University, La Paz, B.C.S., México.

Hai, N.V. 2015. The use of probiotics in aquaculture. Journal of Applied Microbiology, 119, 917–935.

Hammer, Ø., Harper, D.A., Ryan, P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica, 4(1), 9.

Hasyimi, W., Widanarni, W., Yuhana, M. 2020. Growth Performance and Intestinal Microbiota Diversity in Pacific White Shrimp Litopenaeus vannamei Fed with a Probiotic Bacterium, Honey Prebiotic, and Synbiotic. Current Microbiology, 77, 2982-2990.

Huynh, T.G., Shiu, Y.L., Nguyen, T.P., Truong, Q.P., Chen, J.C., Liu, C.H. 2017. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish and Shellfish Immunology, 64, 367–382.

Huynh, T.G., Chi, C.C., Nguyen, T.P., Tran, T.T.T.H., Cheng, A.C., Liu, C.H. 2018. Effects of synbiotic containing Lactobacillus plantarum 7–40 and galactooligosaccharide on the growth performance of white shrimp, Litopenaeus vannamei. Aquaculture Research, 49, 2416-2428.

Huynh, T.G., Hu, S.Y., Chiu, C.S., Truong, Q.P., Liu, C.H. 2019. Bacterial population in intestines of white shrimp, Litopenaeus vannamei fed a synbiotic containing Lactobacillus plantarum and galactooligosaccharide. Aquaculture Research, 50, 807-817.

Jamal, M.T., Abdulrahman, I.A., Al Harbi, M., Chithambaran, S. 2019. Probiotics as alternative control measures in shrimp aquaculture: A review. Journal of Applied Biology & Biotechnology, 7, 69-77.

Johnson, C.N. 2013. Fitness factors in Vibrios: A Mini-review. Microbial Ecology, 65, 826–851.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41:e1.

Kesarcodi-Watson, A., Kaspar, H., Lategan, M.J., Gibson, L. 2008. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture, 274, 1–14.

Kewcharoen, W., Srisapoome, P. 2019. Probiotic effects of Bacillus spp. from Pacific white shrimp (Litopenaeus vannamei) on water quality and shrimp growth, immune responses, and resistance to Vibrio parahaemolyticus (AHPND strains). Fish & shellfish immunology, 94, 175-189.

Kirchman, D.L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiology Ecology, 39, 91–100.

Kongnum, K., Hongpattarakere, T. 2012. Effect of Lactobacillus plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (Litopenaeus vannamei) challenged with Vibrio harveyi. Fish and Shellfish Immunology, 32, 170–177.

Kumar, V., Roy, S., Meena, D.K., Sarkar, U.K. 2016. Application of probiotics in shrimp aquaculture: importance, mechanisms of action, and methods of administration. Reviews in Fisheries Science & Aquaculture, 24, 342-368.

Li, Y., Yuan, W., Zhang, Y., Liu, H., Dai, X. 2020. Single or combined effects of dietary arabinoxylan-oligosaccharide and inulin on growth performance, gut microbiota, and immune response in Pacific white shrimp Litopenaeus vannamei. Journal of Oceanology and Limnology, 1-14.

Li, P., Burr, G.S., Gatlin, D.M., Hume, M.E., Patnaik, S., Castille, F.L., Lawrence, A.L. 2007. Dietary supplementation of short-chain fructooligosaccharides influences gastrointestinal microbiota composition and immunity characteristics of Pacific white shrimp, Litopenaeus vannamei, cultured in a recirculating system. The Journal of Nutrition, 137, 2763–2768.

Liu, C.H., Chiu, C.S., Ho, P.L., Wang, S.W. 2009. Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. Journal of Applied Microbiology, 107, 1031–1041.

Liu, K.F., Chiu, C.H., Shiu, Y.L., Cheng, W., Liu, C.H. 2010. Effects of the probiotic, Bacillus subtilis E20, on the survival, development, stress tolerance, and immune status of white shrimp, Litopenaeus vannamei larvae. Fish and Shellfish Immunology, 28, 837–844.

Luna-González, A., Almaraz-Salas, J.C., Fierro-Coronado, J.A., Flores-Miranda, M.C., González-Ocampo, H.A., Peraza-Gómez, V. 2012. The prebiotic inulin increases the phenoloxidase activity and reduces the prevalence of WSSV in whiteleg shrimp (Litopenaeus vannamei) cultured under laboratory conditions. Aquaculture, 362-363, 28–32.

Mahious, A.S., Gatesoupe, F.J., Hervi, M., Metailler, R., Ollevier, F. 2006. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquaculture International, 14, 219- 229.

Manning, T.S., Gibson, G.R. 2004. Prebiotics. Best Practice & Research Clinical Gastroenterology, 18, 287–298.

Martínez-Córdova, L.R., Emerenciano, M., Miranda-Baeza, A., Martínez-Porchas, M. 2015. Microbial-based systems for aquaculture of fish and shrimp: an updated review. Reviews in Aquaculture, 7, 131–148.

Martinez, J.L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157, 2893–2902.

Moss, S.M. 2002. Dietary importance of microbes and detritus in Penaeid shrimp aquaculture. In: Lee, C.S., O'Bryen, P. (Eds.), Microbial approaches to aquatic nutrition within environmentally sound aquaculture production systems. World Aquaculture Society, Baton Rouge, LA, 1–18 pp.

Munaeni, W., Yuhana, M., Widanarni, W. 2014. Effect of micro-encapsulated synbiotic at different frequencies for luminous Vibriosis control in White shrimp (Litopenaeus vannamei). Microbiology Indonesia, 8, 73–80.

Ninawe, A.S., Selvin, J. 2009. Probiotics in shrimp aquaculture: Avenues and challenges. Critical Reviews in Microbiology, 35, 43–66.

Novriadi, R. 2016. Vibriosis in aquaculture. Omni-Akuatika, 12(1).

Olmos, J., Acosta, M., Mendoza, G., Pitones, V. 2020. Bacillus subtilis, an ideal probiotic bacterium to shrimp and fish aquaculture that increase feed digestibility, prevent microbial diseases, and avoid water pollution. Archives of microbiology, 202, 427-435.

Partida-Arangure, B.O., Luna-González, A., Fierro-Coronado, J.A., Flores-Miranda, C., González-Ocampo, H.A. 2013. Effect of inulin and probiotic bacteria on growth, survival, immune response, and prevalence of white spot syndrome virus (WSSV) in Litopenaeus vannamei cultured under laboratory conditions. African Journal of Biotechnology, 12, 3366–3375.

Peña-Rodríguez, A., Morales-Alvarado, G., Elizondo-González, R., Mendoza-Carrión, G., Tovar-Ramírez, D., Escobedo-Fregoso, C. 2020. Seaweed single cell detritus effects on the digestive enzymes activity and microbiota of the oyster Crassostrea gigas. Journal of Applied Phycology, 32, 3481–3493.

Quiroz-Guzmán, E., Vázquez-Juárez, R., Luna-González, A., Balcázar, J.L., Barajas-Sandoval, D.R., Martínez-Díaz, S.F. 2018. Administration of probiotics improves the brine shrimp production and prevents detrimental effects of pathogenic Vibrio species. Marine Biotechnology, 20, 512-519.

Rashid, M., Stingl, U. 2015. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnology Advances, 33, 1755–1773.

Ringø, E., Olsen, R.E., Gifstad, T., Dalmo, R.A., Amlund, H., Hemre, G.I., Bakke, A.M. 2010. Prebiotics in aquaculture: A review. Aquaculture Nutrition, 16, 117–136.

Rungrassamee, W., Klanchui, A., Maibunkaew, S., Chaiyapechara, S., Jiravanichpaisal, P., Karoonuthaisiri, N. 2014. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon). PLoS ONE, 9, e91853.

Sadat Hoseini Madani, N., Adorian, T.J., Ghafari Farsani, H., Hoseinifar, S.H. 2018. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquaculture Research, 49(5), 1926-1933.

Saha, B.C. 2006. Production of mannitol from inulin by simultaneous enzymatic saccharification and fermentation with Lactobacillus intermedius NRRL B-3693. Enzyme and Microbial Technology, 39, 991–995.

Savedboworn, W., Niyomrat, S., Naknovn, J., Phattayakorn, K. 2018. Impact of inulin on viability and storage stability of probiotic Lactobacillus plantarum TISTR 2075 in fermented rice extract. Agriculture and Natural Resources, 51, 463-469.

Thompson, F.L., Iida, T., Swings, J. 2004. Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews, 68, 403–431.

Tzuc, J., Escalante, D., Rojas-Herrera, R, Gaxiola-Cortés, G., Ortiz, M. 2014. Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei). SpringerPlus, 3, 280.

Vargas-Albores, F., Porchas-Cornejo, M.A., Martínez-Porchas, M., Villalpando-Canchola, E., Gollas-Galván, T., Martínez-Córdova, L.R. 2017. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: a high throughput sequencing approach. Helgoland Marine Research, 71, 5.

Venkat, H.K., Sahu, N.P., Jain, K.K. 2004. Effect of feeding Lactobacillus-based probiotics on the gut microflora, growth and survival of postlarvae of Macrobrachium rosenbergii (de Man). Aquaculture Research, 35, 501–507.

Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64, 655–671.

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and "All-species Living Tree Project (LTP)" taxonomic frameworks. Nucleic Acids Research, 42:D643-D648.

Wainwright, P.F., Mann, K.H. 1982. Effect of antimicrobial substances on the ability of the mysid shrimp Mysis stenolepis to digest cellulose. Marine Ecology Progress Series, 7, 309-313.

Wang, Y.C., Hu, S.Y., Chiu, C.S., Liu, C.H. 2019. Multiple-strain probiotics appear to be more effective in improving the growth performance and health status of white shrimp, Litopenaeus vannamei, than single probiotic strains. Fish & shellfish immunology, 84, 1050-1058.

Williams, T.J., Wilkins, D., Long, E., Evans, F., Demaere, M.Z., Raftery, M.J., Cavicchioli, R. 2013. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environmental Microbiology, 15, 1302-1317.

Wongsasak, U., Chaijamrus, S., Kumkhong, S., Boonanuntanasarn, S. 2015. Effects of dietary supplementation with β-glucan and synbiotics on immune gene expression and immune parameters under ammonia stress in Pacific white shrimp. Aquaculture, 436, 179–187.

Xiong, J., Wang, K., Wu, J., Qiuqian, L., Yang, K., Qian, Y., Zhang, D. 2015. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Applied Microbiology and Biotechnology, 99, 6911–6919.

Zhang, Q., Tan, B., Mai, K., Zhang, W., Ma, H., Ai, Q., Wang, X., Liufu, Z. 2011. Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquaculture Research, 42, 943–952.

Zheng, C.N., Wang, W. 2017. Effects of Lactobacillus pentosus on the growth performance, digestive enzyme and disease resistance of white shrimp, Litopenaeus vannamei (Boone, 1931). Aquaculture Research, 48(6), 2767-2777.

Zheng, X., Duan, Y., Dong, H., Zhang, J. 2017. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages. PeerJ, 5, e3986.

Zherebtsov, N.A., Shelamova, S.A., Abramova, I.N. 2002. Biosynthesis of inulinases by Bacillus bacteria. Applied Biochemestry and Microbiology, 38, 544–548.

Zhou, L., Li, H., Qin, J.G., Wang, X., Chen, L., Xu, C., Li, E. 2020. Dietary prebiotic inulin benefits on growth performance, antioxidant capacity, immune response and intestinal microbiota in Pacific white shrimp (Litopenaeus vannamei) at low salinity. Aquaculture, 518, 734847.

Zhou, J., Fang, W., Yang, X., Zhou, S., Hu, L., Li, X., Qi, X., Su, H., Xie, L. 2012. A nonluminescent and highly virulent Vibrio harveyi strain is associated with “bacterial white tail disease” of Litopenaeus vannamei shrimp. PLoS ONE, 7, e29961.

Zhou, X.X., Wang, Y.B., Li, W.F. 2009. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture, 287, 349–353.

Zubaidah, A., Yuhana, M., Widanarni. 2015. Encapsulated synbiotic dietary supplementation at different dosages to prevent Vibriosis in white shrimp, Litopenaeus vannamei. HAYATI Journal of Biosciences, 22, 163–168.