Tropical fruits and by-products as a potential source of bioactive polysaccharides

Autores/as

DOI:

https://doi.org/10.18633/biotecnia.v23i3.1450

Palabras clave:

Subproductos, frutas tropicales, polisacáridos, propiedades bioactivas

Resumen

El consumo de frutas tropicales está creciendo en todo el mundo, no solo por su sabor y apariencia, sino también por su valor nutricional. Además del contenido en macro y micronutrientes, las frutas tropicales contienen cantidades sustanciales de compuestos bioactivos en cáscaras y semillas, que constituyen una fuente subexplotada de compuestos bioactivos como ácido fenólico, polifenoles, carotenoides, vitamina C y polisacáridos. Los polisacáridos han atraído un interés creciente, especialmente por sus características bioactivas como antioxidantes y propiedades antihipoglucemiantes, antiinflamatorias, antimicrobianas, anticoagulantes, hepatoprotectoras e inmunomoduladoras. Por tanto, la obtención de ingredientes funcionales a partir de frutas tropicales y subproductos es factible y podría utilizarse para desarrollar alimentos funcionales y nutracéuticos para elaborar productos de la industria farmacéutica y conservación de alimentos. La presente revisión proporciona la información más relevante publicada durante los últimos diez años (2010-2020) sobre polisacáridos bioactivos extra+idos con agua caliente reportados en frutas tropicales y subproductos y su relación con posibles efectos beneficiosos para la salud.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alias, A., Othman, F., Li, A.R., Kamaruddin, A., Yusof, R. y Hussan, F. 2015. Supplementation of Psidium guajava (Guava) fruit polysaccharide attenuates paracetamol-induced liver injury by enhancing the endogenous antioxidant activity. Sains Malaysiana. 44: 1129-1136.

Bhattacharya, Susinjan. Reactive oxygen species and cellular defense system. En: Free radicals in human health and disease. Rani V. y Yadav U.C.S. (ed.), pp 17-29. New Delhi: Springer, India

Batista, J.A., de Aguiar Magalhães, D., Sousa, S.G., dos Santos Ferreira, J., Pereira, C.M.C., do Nascimento Lima, J.V., Figueira de Albuquerque, I., Sousa Dutra Bezerra, N.L. Vieira de Brito, T., da Silva Monteiro, C.E., Franco, A.X., Di Lenardo, D., Almeida Oliveira L., J.P., de Andrade Feitosa, Monteiro de Paula, R.C., Nogueira Barros, F.C., Soares de Oliveira, J., Pereira Vasconcelos, D.F., Gomes Soares, P.M.y dos Reis Barbosa, A.L. 2020. Polysaccharides derived from Morinda citrifolia Linn reduce inflammatory markers during experimental colitis. Journal of Ethnopharmacology. 248: 112303.

Carrillo-López, A. y Yahia, E.M. 2011. Noni (Morinda citrifolia L.). En: Postharvest Biology and Technology of Tropical and Subtropical Fruits. Editor(s): Elhadi M. Yahia (ed.), pp 51-64e. Woodhead Publishing.

Chen, Y., Zhou, T., Zhang, Y., Zou, Z., Wang, F. y Xu, D. 2015. Evaluation of antioxidant and anticancer activities of guava. International Journal of Food Nutrition and Safety. 6: 1-9.

Cheok, C.Y., Mohd Adzahan, N., Abdul Rahman, R., Zainal Abedin, N.H., Hussain, N., Sulaiman, R. y Chong, G.H. 2018. Current trends of tropical fruit waste utilization. Critical Reviews in Food Science and Nutrition. 58: 335-361.

Chi, A., Kang, C., Zhang, Y., Tang, L., Guo, H., Li, H. y Zhang, K. 2015. Immunomodulating and antioxidant effects of polysaccharide conjugates from the fruits of Ziziphus Jujube on Chronic Fatigue Syndrome rats. Carbohydrate Polymers. 122: 189-196.

de Sousa Sabino, L.B., da Costa Gonzaga, M.L., de Siqueira Oliveira, L., Duarte, A.S. G., e Silva, L.M.A., de Brito, E.S., de Figueiredo, W., da Silva, M.R.L. y de Sousa, P.H.M. 2020. Polysaccharides from acerola, cashew apple, pineapple, mango, and passion fruit co-products: Structure, cytotoxicity and gastroprotective effects. Bioactive Carbohydrates and Dietary Fibre. 24: 100228.

de Jesus Raposo, M.F., De Morais, A.M.B. y De Morais, R.M.S.C. 2015. Marine polysaccharides from algae with potential biomedical applications. Marine Drugs. 13: 2967-3028.

Dembitsky, V.M., Poovarodom, S., Leontowicz, H., Leontowicz, M., Vearasilp, S., Trakhtenberg, S. y Gorinstein, S. 2011. The multiple nutrition properties of some exotic fruits: Biological activity and active metabolites. Food Research International. 44: 1671-1701.

Dou, Z., Chen, C. y Fu, X. 2019. The effect of ultrasound irradiation on the physicochemical properties and α-glucosidase inhibitory effect of blackberry fruit polysaccharide. Food Hydrocolloids. 96: 568-576.

Enriquez-Valencia, S.A., Julieta Salazar-Lopez, N.J, Robles-Sanchez, M., Gonzalez-Aguilar, G.A., Fernando Ayala-Zavala, J. y Lopez-Martinez, L.X. 2020. Bioactive properties of exotic tropical fruits and their health benefits. Archivos Latinoamericanos de Nutricion, 70:205-214.

FAO. El futuro de la alimentación y la agricultura: Vías alternativas hacia el 2050. Versión resumida. [Consultado enero 2021] 2018. Disponible en: http://www.fao.org/3/CA1553ES/ca1553es.pdf

Ferreira, S.S., Passos, C.P., Madureira, P., Vilanova, M. y Coimbra, M.A. 2015. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydrate Polymers. 132: 378-396.

Gao, W., Lin, P., Zeng, X.A. y Brennan, M.A. 2017. Preparation, characterization and antioxidant activities of litchi (Litchi chinensis Sonn.) polysaccharides extracted by ultra‐high pressure. International Journal of Food Science & Technology, 52: 1739-1750.

Hasan, N.M., Al Sorkhy, M.A., Al Battah, F.F. 2014. Ziziphus jujube (ennab) of the middle east, food and medicine. Unique Journal of Ayurvedic Herbal Medicine. 2: 7-14.

Holderness, J., Schepetkin, I.A., Freedman, B., Kirpotina, L.N., Quinn, M.T., Hedges, J.F. y Jutila, M.A. 2011. Polysaccharides isolated from Açaí fruit induce innate immune responses. PloS one. 6: e17301.

Hu, Y., Yin, F., Liu, Z., Xie, H., Xu, Y., Zhou, D. y Zhu, B. 2020. Acerola polysaccharides ameliorate high-fat diet-induced non-alcoholic fatty liver disease through reduction of lipogenesis and improvement of mitochondrial functions in mice. Food and Function. 11: 1037-1048.

Huang, L.L., Qiao, F., Peng, G., Yang, X.T. y Duan, X. 2017. Effect of two drying methods on antioxidant activity and hypoglycemic action of polysaccharides in three cultivars of lychee pulp. Drying Technology. 35: 1994-2001.

Huang, F., Zhang, R., Yi, Y., Tang, X., Zhang, M., Su, D., Deng, Y. y Wei, Z. 2014. Comparison of physicochemical properties and immunomodulatory activity of polysaccharides from fresh and dried litchi pulp. Molecules. 19: 3909-3925.

Hung, C.F., Hsu, B.Y., Chang, S.C. yand Chen, B.H. 2012. Antiproliferation of melanoma cells by polysaccharide isolated from Zizyphus jujuba. Nutrition. 28: 98-105.

Jacob, J., Rajiv, P., Gopalan, R. y Lakshmanaperumalsamy, P. 2019. An Overview of Phytochemical and pharmacological potentials of Punica granatum L. Pharmacognosy Journal. 11.

Jiao, Y., Hua, D., Huang, D., Zhang, Q. y Yan, C. 2018. Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food and Function. 9: 3997-4007.

Jing, Y., Huang, L., Lv, W., Tong, H., Song, L., Hu, X. y Yu, R. 2014. Structural characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immunomodulatory activity. Journal of Agricultural and Food Chemistry. 62: 902-911.

Joseph, M.M., Aravind, S.R., Varghese, S., Mini, S. y Sreelekha, T.T. 2012. Evaluation of antioxidant, antitumor and immunomodulatory properties of polysaccharide isolated from fruit rind of Punica granatum. Molecular Medicine Reports. 5: 489-496.

Khan, T., Ali, M., Khan, A., Nisar, P., Jan, S.A., Afridi, S. y Shinwari, Z.K. 2020. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules. 10: 47.

Klosterhoff, R.R., Kanazawa, L. K., Furlanetto, A. L., Peixoto, J.V., Corso, C.R., Adami, E.R., Iacomini, M., Rosalvo, T.H., Fogaça, A.A., Cadena Silva, M.S.C., Andreatini, R. y Cordeiro, L. M. 2018. Antifatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata). International Journal of Biological Macromolecules, 109: 1147-1153.

Li, J., Niu, D., Zhang, Y. y Zeng, X.A. 2020. Physicochemical properties, antioxidant and antiproliferative activities of polysaccharides from Morinda citrifolia L. (Noni) based on different extraction methods. International Journal of Biological Macromolecules. 150: 114-121.

Li, J., Wang, Y., Huang, J., Xu, X. y Xiang, C. 2010. Characterization of antioxidant polysaccharides in bitter gourd (Momordica charantia L.) cultivars. Journal of Food Agriculture and Environment. 8: 117-120.

Lim, T.K. 2012. Passiflora edulis. En: Edible Medicinal and Non-Medicinal Plants. pp 147-165. Springer, Dordrecht.

Lin, H.C. y Lin, J.Y. 2020. Characterization of guava (Psidium guajava Linn) seed polysaccharides with an immunomodulatory activity. International Journal of Biological Macromolecules. 154: 511-520.

Liu, X., Luo, Y., Zha, C., Zhou, S., Liu, L. y and Zhao, L. 2015. Rheological properties of polysaccharides from longan (Dimocarpus longan Lour) fruit. International Journal of Polymer Science, 2015.

Marić, M., Grassino, A.N., Zhu, Z., Barba, F.J., Brnčić, M. y Brnčić, S.R. 2018. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound, microwaves, and enzyme-assisted extraction. Trends in Food Science and Technology. 76: 28-37.

Minzanova, S.T., Mironov, V.F., Arkhipova, D.M., Khabibullina, A.V., Mironova, L.G., Zakirova, Y.M. y Milyukov, V.A. 2018. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers. 10: 1407.

de Oliveira, M.D.S. y Schwartz, G. 2018. Açaí—Euterpe oleracea. En Exotic Fruits Reference Guide. Rodrigues, S., Silva, E., de Brito, E. (ed.), pp. 1-5. Academic Press, Cambridge, UK.

Prakash, A. y Baskaran, R. 2018. Acerola, an untapped functional superfruit: a review on latest frontiers. Journal of Food Science and Technology. 55: 3373-3384.

Qian, J. Y., Bai, Y. Y., Tang, J. y Chen, W. 2015. Antioxidation and α-glucosidase inhibitory activities of barley polysaccharides modified with sulfation. LWT-Food Science and Technology. 64: 104-111.

Rong, Y., Yang, R., Yang, Y., Wen, Y., Liu, S., Li, C., Hu, Z., Cheng, X. y Li, W. 2019. Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydrate Polymers. 213: 247-256.

Silva, D.C., Freitas, A.L.P., Barros, F.C.N., Lins, K.O., Alves, A.P.N., Alencar, N. M., de Figueiredo, I.S.T., Pessoa, C., de Moraes, M.O., Costa-Lotufo, V., Judith P.A., Maciel, J.S, de Paula y de Paula, R.C. 2012. Polysaccharide isolated from Passiflora edulis: Characterization and antitumor properties. Carbohydrate Polymers. 87: 139-145.

Silva, R.O., Damasceno, S.R., Brito, T.V., Dias, J.M., Fontenele, A.M., Braúna, I.S., Júnior, J.S.C., Maciel, J.S., de Paula, R.C.M., Ribeiro, R., Souza, M.H.L.P., Freitas, A.L., Medeiros, J-V. R., Silva, D.C.y Barbosa, A.L. 2015. Polysaccharide fraction isolated from Passiflora edulis inhibits the inflammatory response and the oxidative stress in mice. Journal of Pharmacy and Pharmacology. 67: 1017-1027.

Soni, R. y Agrawal, S. 2017. Litchi chinensis: taxonomy, botany and its cultivars. En Lychee Disease Management. M. Kumar, V. Kumar, N. Bhalla-Sarin, A. Varma (eds) pp. 191-215. Springer, Singapore.

Sousa, S.G., Oliveira, L.A., de Aguiar Magalhães, D., de Brito, T.V., Batista, J.A., Pereira, C.M.C., de Souza Costa, M., Raposo Mazulo, J.C., de Carvalho Filgueiras, M., Pereira Vasconselos D.F., Alves da Silva, D., Nogueira Barros, F.C., Sombra, V.G., Ponte, A. y dos Reis Barbosa, A.L. 2018. Chemical structure and anti-inflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni). Carbohydrate Polymers. 197: 515-523.

Wang, Y., Yang, Z. y Wei, X. 2012. Antioxidant activities potential of tea polysaccharide fractions obtained by ultra-filtration. International Journal of Biological Macromolecules. 50: 558-564.

Wang, J., Hu, S., Nie, S., Yu, Q. y Xie, M. 2016. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxidative Medicine and Cellular Longevity, 2016.

Wasser S.P. 2020. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Applied Microbiology and Biotechnology. 60: 258-274.

Wu, J., Xu, Y., Liu, X., Chen, M., Zhu, B., Wang, H., Shi, S., Qin, L. y Wang, S. 2020. Isolation and structural characterization of a non-competitive α-glucosidase inhibitory polysaccharide from the seeds of Litchi chinensis Sonn. International Journal of Biological Macromolecules. 154: 1105-1115.

Yi, Y., Zhang, M. W., Liao, S. T., Zhang, R.F., Deng, Y.Y., Wei, Z.C., Tang, X.J., y Zhang, Y. 2012. Structural features and immunomodulatory activities of polysaccharides of longan pulp. Carbohydrate Polymers. 87: 636-643.Yan-Hang, W. y Ke-Wu, Z. 2019. Natural products as a crucial source of anti-inflammatory drugs: recent trends and advancements. Traditional Medicine Research. 4:257.

Yin, M., Zhang, Y. y Li, H. 2019. Advances in research on immunoregulation of macrophages by plant polysaccharides. Frontiers in Immunology. 10: 145.

Yuan, Q., Fu, Y., Xiang, P.Y., Zhao, L., Wang, S.P., Zhang, Q., Liu, Y-T., Qin, W., Li, D-Q. y Wu, D.T. 2019. Structural characterization, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas. Royal Society of Chemistry Advances. 9: 35443-35451.

Yue, Y., Wu, S., Li, Z., Li, J., Li, X., Xiang, J. y Ding, H. 2015. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function. Food and Function. 6: 2568-2577.

Xu, C., Lv, J., Lo, Y. M., Cui, S. W., Hu, X. y Fan, M. 2013. Effects of oat β-glucan on endurance exercise and its antifatigue properties in trained rats. Carbohydrate Polymers. 92: 1159-1165.

Zhang, Z., Kong, F., Ni, H., Mo, Z., Wan, J.B., Hua, D. y Yan, C. 2016. Structural characterization, α-glucosidase inhibitory and DPPH scavenging activities of polysaccharides from guava. Carbohydrate Polymers. 144: 106-114.

Zhao, Y., Yang, X., Ren, D., Wang, D. y Xuan, Y. 2014. Preventive effects of jujube polysaccharides on fructose-induced insulin resistance and dyslipidemia in mice. Food and Function. 5: 1771-1778.

Zheng, S.Q., Jiang, F., Gao, H.Y. y Zheng, J.G. 2010. Preliminary observations on the antifatigue effects of longan (Dimocarpus longan Lour.) seed polysaccharides. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 24: 622-624.

Zhong, K., Wang, Q., He, Y. y He, X. 2010. Evaluation of radicals scavenging immunity-modulatory and antitumor activities of longan polysaccharides with ultrasonic extraction on in S180 tumor mice models. International Journal of Biological Macromolecules. 47: 356-360.

Publicado

2021-10-20

Cómo citar

Enríquez-Valencia, S. A., González Aguilar, G., & López-Martínez, L. X. . (2021). Tropical fruits and by-products as a potential source of bioactive polysaccharides . Biotecnia, 23(3). https://doi.org/10.18633/biotecnia.v23i3.1450

Número

Sección

Artículos originales

Métrica

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.